Skip to main content

Planning in Discrete and Continuous Spaces: From LTL Tasks to Robot Motions

  • Conference paper
Advances in Autonomous Robotics (TAROS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7429))

Included in the following conference series:

Abstract

Enabling robots to accomplish sophisticated tasks requires enhancing their capability to plan at multiple levels of discrete and continuous abstractions. Toward this goal, the proposed approach couples the ability of sampling-based motion planning to handle the complexity arising from high-dimensional robotic systems, nonlinear dynamics, and collision avoidance with the ability of discrete planning to handle discrete specifications. The approach makes it possible to specify tasks via Linear Temporal Logic (LTL) and automatically computes collision-free and dynamically-feasible motions that enable the robot to carry out assigned tasks. While discrete planning guides sampling-based motion planning, the latter feeds back information to further refine the guide and advance the search. Sampling is also used in the discrete space to shorten the length of the discrete plans and to expand the search toward new discrete states. Experiments with high-dimensional dynamical robot models performing various LTL tasks show significant computational speedups over related work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: theory and practice. Morgan Kaufmann (2004)

    Google Scholar 

  2. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

    Google Scholar 

  3. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Stentz, A.: Optimal and efficient path planning for partially-known environments. In: IEEE Intl. Conf. on Robotics and Automation, San Diego, CA, pp. 3310–3317 (1994)

    Google Scholar 

  5. Tompkins, P., Stentz, A., Wettergreen, D.: Mission-level path planning and re-planning for rover exploration. Robotics and Autonomous Systems 54(1), 174–183 (2006)

    Article  Google Scholar 

  6. Saffiotti, A., Konolige, K., Ruspini, E.H.: A multivalued logic approach to integrating planning and control. Artificial Intelligence 76(1-2), 481–526 (1995)

    Article  Google Scholar 

  7. Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control from abstraction and temporal logic specifications. IEEE Robotics and Automation Magazine 18(3), 65–74 (2011)

    Article  Google Scholar 

  8. Ding, X.C., Kloetzer, M., Chen, Y., Belta, C.: Formal methods for automatic deployment of robotic teams. IEEE Robotics and Automation Magazine 18(3), 75–86 (2011)

    Article  Google Scholar 

  9. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic mobile robots. Automatica 45(2), 343–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a synergistic combination of layers of planning. IEEE Trans. on Robotics 26(3), 469–482 (2010)

    Article  Google Scholar 

  11. Plaku, E., Hager, G.D.: Sampling-based motion and symbolic action planning with geometric and differential constraints. In: IEEE Intl. Conf. on Robotics and Automation, Anchorage, AK, pp. 5002–5008 (2010)

    Google Scholar 

  12. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL Safety Properties in Hybrid Systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 368–382. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Bhatia, A., Maly, M., Kavraki, L., Vardi, M.: Motion planning with complex goals. IEEE Robotics Automation Magazine 18, 55–64 (2011)

    Article  Google Scholar 

  14. Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sistla, A.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6, 495–511 (1994)

    Article  MATH  Google Scholar 

  16. Laumond, J.: Controllability of a multibody mobile robot. IEEE Trans. on Robotics and Automation 9(6), 755–763 (1993)

    Article  Google Scholar 

  17. Van Den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. Intl. J. of Robotics Research 30(7), 895–913 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plaku, E. (2012). Planning in Discrete and Continuous Spaces: From LTL Tasks to Robot Motions. In: Herrmann, G., et al. Advances in Autonomous Robotics. TAROS 2012. Lecture Notes in Computer Science(), vol 7429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32527-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32527-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32526-7

  • Online ISBN: 978-3-642-32527-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics