Skip to main content

Frankle-McCann Retinex by Shuffling

  • Conference paper
Convergence and Hybrid Information Technology (ICHIT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7425))

Included in the following conference series:

Abstract

In this paper, our aim is to present an alternative to the ratio-product term of Frankle-McCann Retinex by manipulating shifting directions and the number of iterations, which is a major obstacle in applications, keeping the quality of the result images. For this, we focus on replacing the shifting mechanism with a symmetrical shuffling method that partitions all given regions in each channel image into two parts per region and then exchanges each other in two pre-determined directions. This processing has the advantage in that there is no need to consider shifting directions at a step, so the complexity of the algorithm is reduced, except for the shuffling cost. From the experiments on Barnard’s four datasets, the results showed that our expectation can be met by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Land, E., McCann, J.: Lightness and Retinex Theory. J. the Optical Society of America 6, 1–11 (1971)

    Article  Google Scholar 

  2. Gijsenij, A., Gevers, T., Weijer, J.: Computational Color Constancy: Survey and Experimetns. IEEE Trans. Image Processing 20(9), 2475–2489 (2011)

    Article  Google Scholar 

  3. Provenzi, E., Fierro, M., Rizzi, A., Carli, L., Gadia, D., Marini, D.: Random Spray Retinex: a New Retinex Implementation the Local Properties of the Model. IEEE Trans. Image Processing 16, 162–171 (2007)

    Article  Google Scholar 

  4. Land, E.: The Retinex Theory of Color Vision. Scientific American 237, 108–128 (1977)

    Article  MathSciNet  Google Scholar 

  5. Jobson, D., Rahman, Z., Woodell, G.: Properties and Performance of a Center/Surround Retinex. IEEE Trans. Image Processing 6(3), 451–462 (1997)

    Article  Google Scholar 

  6. Rahman, Z., Jobson, D., Woodell, G.: Multi-scale Retinex for Color Image Enhancement. In: Proc. Image Processing (1996)

    Google Scholar 

  7. Wang, W., Li, B., Zheng, X.S., Wang, J.: A Fast Multi-scale Retinex Algorithm for Color Image Enhancement. In: Proc. ICWAPR, pp. 80–95 (2008)

    Google Scholar 

  8. Horn, B.: Determining Lightness from an Image. Computer Graphics and Image Processing 3, 277–299 (1974)

    Article  Google Scholar 

  9. Morel, J., Petro, A., Sbert, C.: A PDE Formalization of Retinex Theory. IEEE Trans. Image Processing 19(11), 2825–2837 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A Variational Framework for Retinex. International Journal of Computer Vision 52(1), 7–23 (2003)

    Article  MATH  Google Scholar 

  11. Ng, M., Wang, W.: A Total Variation for Retinex. J. Image Sciences 4, 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frankle, J., McCann, J.: Method and Apparatus for Lightness Image. U.S. Patent No. 4 384, 336 (1983)

    Google Scholar 

  13. McCann, J.: Lessons Learned from Mondrians Applied to Real Images and Color Gamuts. In: Proc. IS&T/SID 7th Color Imaging Conf. Color Sci. Syst. Appl., vol. 7 (1999)

    Google Scholar 

  14. Cooper, T.: Modifications to Retinex to relax RESET Nonlinearity and Implement Segmentation Constraints. In: Proc. SPIE, vol. 4662, pp. 349–357 (2002)

    Google Scholar 

  15. Ciurea, F., Funt, B.: Turning Retinex Parameters. J. Electronic Imaging 13, 58–64 (2004)

    Article  Google Scholar 

  16. Funt, B., Ciurea, F., McCann, J.: Retinex in MATLAB. J. Electronic Imaging 13, 48–57 (2004)

    Article  Google Scholar 

  17. Xiong, W., Funt, B.: Stereo Retinex. Image and Vision Computing 27(1-2), 178–188 (2009)

    Article  Google Scholar 

  18. Zhang, W., An, X., Pan, S.: An Improved Recursive Retinex for Rending High Dynamic Range Photographs. In: Proc. ICWAPR, pp. 121–125 (2011)

    Google Scholar 

  19. Pan, S., An, X., He, H.: Combining Recursive Retinex and Eye Adaptation for High Dynamic Range Compression. In: Proc. ICWAPR, pp. 115–120 (2011)

    Google Scholar 

  20. Barnard, K., Martin, L., Funt, B., Coath, A.: A Data Set for Color Research. Color Research and Application 27(3), 148–152 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hwang, DG., Lee, WR., Oh, YJ., Jun, BM. (2012). Frankle-McCann Retinex by Shuffling. In: Lee, G., Howard, D., Kang, J.J., Ślęzak, D. (eds) Convergence and Hybrid Information Technology. ICHIT 2012. Lecture Notes in Computer Science, vol 7425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32645-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32645-5_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32644-8

  • Online ISBN: 978-3-642-32645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics