Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 447))

Abstract

Using evolutionary algorithms when solving multi-objective optimization problems (MOPs) has shown remarkable results during the last decade. As a consolidated research area it counts with a number of guidelines and processes; even though, their efficiency is still a big issue which lets room for improvements. In this chapter we explore the use of gradient-based information to increase efficiency on evolutionary methods, when dealing with smooth real-valued MOPs. We show the main aspects to be considered when building local search operators using the objective function gradients, and when coupling them with evolutionary algorithms. We present an overview of our current methods with discussion about their convenience for particular kinds of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer (1990)

    Google Scholar 

  2. Bosman, P.A.N., de Jong, E.D.: Exploiting Gradient Information in Numerical Multi-Objective Evolutionary Optimization. In: Beyer, H.-G., et al. (eds.) 2005 Genetic and Evolutionary Computation Conference (GECCO 2005), vol. 1, pp. 755–762. ACM Press, New York (2005)

    Chapter  Google Scholar 

  3. Bosman, P.A.N., de Jong, E.D.: Combining Gradient Techniques for Numerical Multi-Objective Evolutionary Optimization. In: Keijzer, M., et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 1, pp. 627–634. ACM Press (July 2006) ISBN 1-59593-186-4

    Google Scholar 

  4. Bosman, P.A.N., Thierens, D.: The Naive MIDEA: A Baseline Multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 428–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Branke, J., Mostaghim, S.: About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 523–532. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Brown, M., Smith, R.E.: Effective Use of Directional Information in Multi-objective Evolutionary Computation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 778–789. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Brown, M., Smith, R.E.: Directed Multi-objective Optimization. International Journal of Computers, Systems and Signals 6(1), 3–17 (2005)

    Google Scholar 

  8. Coello Coello, C.A., Lamont, G.B. (eds.): Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  9. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A. (eds.): Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007) ISBN 978-0-387-33254-3

    MATH  Google Scholar 

  10. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001) ISBN 0-471-87339-X

    MATH  Google Scholar 

  11. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto Sets by Multilevel Subdivision Techniques. Journal of Optimization Theory and Applications 124(1), 113–136 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall (1983)

    Google Scholar 

  13. Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881)

    Google Scholar 

  14. Ehrgott, M., Wiecek, M.M.: Multiobjective Programming. In: Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 78, pp. 667–722. Springer (2005)

    Google Scholar 

  15. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research 51(3), 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. García, P., Fátima, M.L., Julián, C.F., Rafael, C.C., Carlos, A., Hernández-Díaz, A.G.: Hibridación de métodos exactos y heurísticos para el problema multiobjetivo. Rect@, Actas 15(1) (2007)

    Google Scholar 

  17. Gill, P.E., Murray, W., Saunders, M.A.: Snopt: An sqp algorithm for large-scale constrained optimization. SIAM Journal on Optimization 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harada, K., Ikeda, K., Kobayashi, S.: Hybridizing of Genetic Algorithm and Local Search in Multiobjective Function Optimization: Recommendation of GA then LS. In: Keijzer, M., et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 1, pp. 667–674. ACM Press (July 2006) ISBN 1-59593-186-4

    Google Scholar 

  19. Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, p. 820. ACM (2007)

    Google Scholar 

  20. Harada, K., Sakuma, J., Kobayashi, S.: Local Search for Multiobjective Function Optimization: Pareto Descent Method. In: GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 659–666. ACM Press, New York (2006)

    Chapter  Google Scholar 

  21. Hernández-Díaz, A.G., Coello Coello, C.A., Pérez, F., Caballero, R., Molina, J., Santana-Quintero, L.V.: Seeding the Initial Population of a Multi-Objective Evolutionary Algorithm using Gradient-Based Information. In: 2008 Congress on Evolutionary Computation (CEC 2008), Hong Kong, pp. 1617–1624. IEEE Service Center (June 2008)

    Google Scholar 

  22. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. International Series of Numerical Mathematics, vol. 135. Birkhäuser (2001)

    Google Scholar 

  23. Hu, X., Huang, Z., Wang, Z.: Hybridization of the Multi-Objective Evolutionary Algorithms and the Gradient-based Algorithms. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, vol. 2, pp. 870–877. IEEE Press (December 2003)

    Google Scholar 

  24. Ishibuchi, H., Yoshida, T., Murata, T.: Balance Between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Transactions on Evolutionary Computation 7(2), 204–223 (2003)

    Article  Google Scholar 

  25. Jaszkiewicz, A.: Genetic local search for multiple objective combinatorial optimization. European Journal of Operational Research 137(1), 50–71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis, The University of Reading, Department of Computer Science, Reading, UK (January 2002)

    Google Scholar 

  27. Kuhn, H.W., Tucker, A.W.: Nonlinear Programming. In: Proceedings of the Second Berkeley Symposium on Mathematics Statistics and Probability, University of California Press (1951)

    Google Scholar 

  28. Lara, A., Coello Coello, C.A., Schütze, O.: Using Gradient-Based Information to Deal with Scalability in Multi-objective Evolutionary Algorithms. In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, pp. 16–23. IEEE Press (May 2009)

    Google Scholar 

  29. Lara, A., Coello Coello, C.A., Schütze, O.: A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE Press (2010)

    Google Scholar 

  30. Lara, A., Coello Coello, C.A., Schütze, O.: Using gradient information for multi-objective problems in the evolutionary context. In: Proceedings of the 12th Annual Conference Comp on Genetic and Evolutionary Computation, pp. 2011–2014. ACM (2010)

    Google Scholar 

  31. Lara, A., Sanchez, G., Coello Coello, C.A., Schütze, O.: HCS: A New Local Search Strategy for Memetic Multi-Objective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 14(1), 112–132 (2010)

    Article  Google Scholar 

  32. Lara, A., Schütze, O., Coello Coello, C.A.: New Challenges for Memetic Algorithms on Continuous Multi-objective Problems. In: GECCO 2010 Workshop on Theoretical Aspects of Evolutionary Multiobjective Optimization, Portland, Oregon USA, pp. 1967–1970. ACM (July 2010)

    Google Scholar 

  33. Mejía, E.: The directed search method for constrained multi-objective optimization problems. Master’s thesis, CINVESTAV-IPN, México City (November 2010)

    Google Scholar 

  34. Mejía, E., Schütze, O.: A predictor corrector method for the computation of boundary points of a multi-objective optimization problem. In: 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 395–399. IEEE (2010)

    Google Scholar 

  35. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826 (1989)

    Google Scholar 

  36. Nocedal, J., Wright, S.: Numerical Optimization, Series in Operations Research and Financial Engineering. Springer, New York (2006)

    Google Scholar 

  37. Pareto, V.: Cours Déconomie Politique. Lausanne, F. Rouge, Paris (1896)

    Google Scholar 

  38. Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. Journal of Optimization Theory and Applications 114(1), 209–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schütze, O., Lara, A., Coello Coello, C.A.: The directed search method for unconstrained multi-objective optimization problems. In: A Bridge Between Probability, Set Oriented Numerics and Evolutionary Computation, EVOLVE 2011 (2011)

    Google Scholar 

  40. Schütze, O., Lara, A., Coello Coello, C.A.: The directed search method for multi-objective optimization problems. Technical report (2009), http://delta.cs.cinvestav.mx/~schuetze/technical_reports/index.html

  41. Schütze, O., Lara, A., Coello Coello, C.A.: Evolutionary Continuation Methods for Optimization Problems. In: 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), Montreal, Canada, July 8-12, pp. 651–658. ACM Press (2009) ISBN 978-1-60558-325-9

    Google Scholar 

  42. Schütze, O., Lara, A., Coello Coello, C.A.: On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Transactions on Evolutionary Computation 15(4), 444–455 (2011)

    Article  Google Scholar 

  43. Schütze, O., Talbi, E.-G., Coello Coello, C., Santana-Quintero, L.V., Pulido, G.T.: A Memetic PSO Algorithm for Scalar Optimization Problems. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), Honolulu, Hawaii, USA, pp. 128–134. IEEE Press (April 2007)

    Google Scholar 

  44. Shukla, P.K.: Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 58–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  45. Shukla, P.K.: On Gradient Based Local Search Methods in Unconstrained Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 96–110. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  46. Sindhya, K., Deb, K., Miettinen, K.: A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 815–824. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  47. Vasile, M., Zuiani, F.: A hybrid multiobjective optimization algorithm applied to space trajectory optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  48. Vasile, M., Zuiani, F.: Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2011)

    Google Scholar 

  49. Wierzbicki, A.P.: Reference point methods in vector optimization and decision support. Working Papers ir98017. International Institute for Applied Systems Analysis (April 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Lara, A., Schütze, O., Coello Coello, C.A. (2013). On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms. In: Tantar, E., et al. EVOLVE- A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Studies in Computational Intelligence, vol 447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32726-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32726-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32725-4

  • Online ISBN: 978-3-642-32726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics