Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1048 Accesses

Abstract

Fundamental quantum physics and quantum information science has found great experimental success through control over single photons in optical circuits. To date, however, the majority of quantum optical experiments use large scale (bulk) optical elements bolted down to an optical bench; an approach that ultimately limits the complexity and stability of quantum circuits required for quantum science and technology (QST). Here, a series of experiments are reported in the emerging field of integrated quantum photonics that show monolithic waveguide chips to be a suitable platform for realising the next generation of quantum optical circuits. These demonstrations are foundational in developing a new quantum photonic platform necessary for studying fundamental quantum physics and for advancing quantum information science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  2. N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  3. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  4. S. Lloyd, Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. I. Buluta, F. Nori, Quantum simulators. Science 326, 108 (2009)

    Google Scholar 

  6. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  7. D.P. DiVincenzo, D. Loss, Quantum information is physical. Superlatt. Microstruct. 23, 419–432 (1998)

    Article  ADS  Google Scholar 

  8. J.L. O’Brien, Optical quantum computing. Science 318(5856), 1567–1570 (2007)

    Article  ADS  Google Scholar 

  9. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P.M. Gorman, P.R. Tapster, J.G. Rarity, Quantum cryptography: a step towards global key distribution. Nature 419(6906), 450–450 (2002)

    Article  ADS  Google Scholar 

  10. M. Peev, C. Pacher, R. Alleaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, S. Fossier, M. Fuerst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Huebel, G. Humer, T. Laenger, M. Legre, R. Lieger, J. Lodewyck, T. Loruenser, N. Luetkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A.W. Sharpe, A.J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R.T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z.L. Yuan, H. Zbinden, A. Zeilinger, The secoqc quantum key distribution network in vienna. New J. Phys. 11, 075001 (2009)

    Article  ADS  Google Scholar 

  11. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  12. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426(6964), 264–267 (2003)

    Article  ADS  Google Scholar 

  13. S. Gasparoni, J.W. Pan, P. Walther, T. Rudolph, A. Zeilinger, Realization of a photonic controlled-not gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004)

    Article  ADS  Google Scholar 

  14. T.B. Pittman, B.C. Jacobs, J.D. Franson, Demonstration of quantum error correction using linear optics. Phys. Rev. A 71, 052332 (2005)

    Article  ADS  Google Scholar 

  15. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, High-fidelity z-measurement error encoding of optical qubits. Phys. Rev. A 71(6), 060303 (2005)

    Google Scholar 

  16. C.Y. Lu, W-B. Gao, J. Zhang, X-Q. Zhou, T. Yang, J-W. Pan, Experimental quantum coding against qubit loss error. Proc. Natl. Acad. Sci. USA 105, 11050–11054 (2008)

    Google Scholar 

  17. C.-Y. Lu, D.E. Browne, T. Yang, J.W. Pan, Demonstration of a compiled version of shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007)

    Article  ADS  Google Scholar 

  18. B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99(25), 250505 (2007)

    Article  ADS  Google Scholar 

  19. B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, A.G. White, Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  20. X-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, P. Walther, Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399–405 (2011)

    Google Scholar 

  21. M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state. Nature 429(6988), 161–164 (2004)

    Article  ADS  Google Scholar 

  22. P. Walther, J.W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, A. Zeilinger, De broglie wavelength of a non-local four-photon state. Nature 429(6988), 158–161 (2004)

    Article  ADS  Google Scholar 

  23. T. Nagata, R. Okamoto, J.L. O’brien, K. Sasaki, S. Takeuchi, Beating the standard quantum limit with four-entangled photons. Science 316(5825), 726–729 (2007)

    Article  ADS  Google Scholar 

  24. B.L. Higgins, D.W. Berry, S.D. Bartlett, H.M. Wiseman, G.J. Pryde, Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393 (2007)

    Google Scholar 

  25. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  26. J. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  27. S.J. Freedman, J.F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28(14), 938–941 (1972)

    Article  ADS  Google Scholar 

  28. A. Aspect, P. Grangier, G. Roger, Experimental tests of realistic local theories via bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  29. A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of bell’s inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982)

    Article  ADS  Google Scholar 

  30. A. Aspect, J. Dalibard, G. Roger, Experimental test of bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  31. J.G. Rarity, P.R. Tapster, Experimental violation of bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990)

    Article  ADS  Google Scholar 

  32. G. Whihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Violations of bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  33. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Experimental violation of a bell’s inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  Google Scholar 

  34. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  35. D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Google Scholar 

  36. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121–1125 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Experimental one-way quantum computing. Nature 434(7030), 169–176 (2005)

    Article  ADS  Google Scholar 

  38. C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Gobel, T. Yang, J.W. Pan, Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  39. A.S. Clark, J. Fulconis, J.G. Rarity, W.J. Wadsworth, J.L. O’Brien, All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303(R) (2009)

    Google Scholar 

  40. T. Honjo, K. Inoue, H. Takahashi, Differential-phase-shift quantum key distribution experiment with aplanar light-wave circuit Mach-Zehnder interferometer. Opt. Lett. 29(23), 2797–2799 (2004)

    Article  ADS  Google Scholar 

  41. H. Takesue, K. Inoue, Generation of \( 1.5-\mu \)m band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers. Phys. Rev. A 72(4), 041804 (2005)

    Google Scholar 

  42. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)

    Article  ADS  Google Scholar 

  43. G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Laser written waveguide photonic quantum circuits. Opt. Express 17(15), 12546–12554 (2009)

    Google Scholar 

  44. A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325(5945), 1221–1221 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A. Laing, A. Peruzzo, A. Politi, M. Rodas Verde, M. Halder, T.C. Ralph, M.G. Thompson, J.L. O’Brien, High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010)

    Article  ADS  Google Scholar 

  46. J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346–350 (2009)

    Article  ADS  Google Scholar 

  47. B.J. Smith, D. Kundys, N. Thomas-Peter, P.G.R. Smith, I.A. Walmsley, Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009)

    Google Scholar 

  48. J.C.F. Matthews, A. Politi, D. Bonneau, J.L. O’Brien, Heralding two-photon and four-photon path entanglement on a chip. Phys. Rev. Lett. 107(163602) (2011)

    Google Scholar 

  49. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)

    Article  ADS  Google Scholar 

  50. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2(566) (2011)

    Google Scholar 

  51. A. Peruzzo, A. Laing, A. Politi, R. Rudolph, J.L. O’Brien, Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2(224) (2011)

    Google Scholar 

  52. H.B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Google Scholar 

  53. E. Keil, A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, A. Tünnermann, Photon correlations in two-dimensional waveguide arrays and their classical estimate. Phys. Rev. A 81, 023834 (2010)

    Google Scholar 

  54. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. O’Brien, Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  55. J.O. Owens, M.A. Broome, D.N. Biggerstaff, M.E. Coggin, A. Fedrizzi, T. Linjordet, M. Ams, G.D. Marshall, J. Twamley, M.J. Withford, A.G. White, Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)

    Article  ADS  Google Scholar 

  56. J.C.F. Matthews, K. Poulios, J.D.A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K.Wörhoff, M.G. Thompson, J.L. O’Brien, Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions. arxiv:1106.1166 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. F. Matthews .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matthews, J.C.F. (2013). Introduction. In: Multi-Photon Quantum Information Science and Technology in Integrated Optics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32870-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32870-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32869-5

  • Online ISBN: 978-3-642-32870-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics