Skip to main content

Lithofacies and Granulometric Characteristics of the Kallamedu Formation, Ariyalur Group, South India: Implications on Cretaceous-Tertiary Boundary Events

  • Chapter
  • First Online:
On a Sustainable Future of the Earth's Natural Resources

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The Kallamedu Formation, deposited during Late Maastrichtian is the thickest and largest sprawling non-marine/coastal stratigraphic unit of the Ariyalur Group, Cauvery basin, South India. However, it had attracted scanty attention from geoscientists owing to its poorly fossiliferous and weathered nature besides the paucity of good exposures. Understanding the depositional conditions of the Kallamedu Formation was necessitated due to the recent finding of continuous exposure of Maastrichtiah-Danian stratigraphic records namely, the Kallankurichchi Formation, the Kallamedu Formation and the Niniyur Formation near Niniyur and presumption of sauropod nesting site there. In this chapter, we report the textural properties of Kallamedu Formation sandstones and draw inferences on depositional and climatic conditions prevalent. The results indicate that the Kallamedu Formation was deposited under coastal plain environment that was periodically inundated by freshwater overflown from ephemeral river channels. The facies characteristics indicate deposition in river channel, flood plain, and overbank micro-environments located adjoining coastal region. Sediment availability was scarce and thus older sedimentary rocks were recycled through erosion-deposition during flood seasons. Predominance of riverine origin and transport of sediments by rolling and suspension mode are indicated by textural properties. Climatic conditions prevalent were inferred to be dry-humid alternations, principally influenced under seasonal/monsoonal conditions. Massive, monotonous, thick to very thick beds and other contact relationships together with mineralogical and textural properties of the Kallamedu Formation suggest the prevalence of flash floods under the influence of anomalous climatic conditions, that might have destabilized the environmental conditions and destructed the ecological niches, contributing towards dwindling and extinction of taxa during end-Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovich S, Keller G (2002) High stress late Maastrichtian palaeoenvironment: inference from planktonic foraminifera in Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 178:145–164

    Article  Google Scholar 

  • Adatte T, Keller G, Li L, Stinnesbeck W (2002) Late Cretaceous to early Palaeocene climate and sea level fluctuations: the Tunisian record. Palaeogeogr Palaeoclimatol Palaeoecol 178:165–196

    Article  Google Scholar 

  • Albertao GA, Martins PP Jr (1996) A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pemambuco, northeastern Brazil. Sediment Geol 104:189–201

    Article  Google Scholar 

  • Alegret L, Thomas E (2004) Benthic foraminifera and environmental turnover across the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeogr Palaeoclimat Palaeoecol 208:59–83

    Article  Google Scholar 

  • Alvarez W (1986) Toward a theory of impact crises. EOS 67:653–655

    Article  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Alvarez W, Kauffman EG, Surlyk F, Alvarez LW, Asaro F, Michel HV (1984a) Impact theory of mass extinctions and the invertebrate fossil record. Science 223:1135–1141

    Article  Google Scholar 

  • Alvarez W, Alvarez LW, Asaro F, Michel HV (1984b) The end of the Cretaceous: sharp boundary of gradual transition? Science 223:1183–1186

    Article  Google Scholar 

  • Arinobu T, Ishiwatari R, Kaiho K, Lamolda MA, Seno H (2005) Abrupt and massive influx of terrestrial biomarkers into the marine environment at the Cretaceous–Tertiary boundary, Caravaca, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 224:1–3

    Article  Google Scholar 

  • Arz JA, Arenillas I, Soria AR, Alegret L, Grajales-Nishimura JM, Liesa CL, Melendez A, Molina E, Rosales MC (2001) Micropalaeontology and sedimentology across the Cretaceous/Tertiary boundary at La Ceiba (Mexico): impact generated sediment gravity flows. South Am Earth Sci 14:505–519

    Article  Google Scholar 

  • Banerji RK (1972) Stratigraphy and micropalaeontology of the Cauvery basin. Part I, exposed area. J Palaeont Soc Ind 17:1–24

    Google Scholar 

  • Bhatia SB (1984) Ostracod faunas of the Indian subcontinent – their palaeozoogeographic and palaeoecologic implications. J Palaeont Soc Ind 20:1–8

    Google Scholar 

  • Bohor BF, Modreski PJ, Foord EE (1987) Shocked quartz in the Cretaceous-Tertiary boundary clays: evidence for a global distribution. Science 236:705–709

    Article  Google Scholar 

  • Chandrasekaran VA, Ramkumar M (1995) Stratigraphic classification of Ariyalur Group (Upper Cretaceous), Tiruchy district, south India – a review. J Geol Assoc Res Centre Misc Pub 1:1–22

    Google Scholar 

  • Chiappe LM, Schitt JG, Jackson FD, Garrido A, Dingus L, Grellet-Tinner G (2004) Nest structure for sauropods: sedimentary criteria for recognition of dinosaurs nesting traces. Palaios 19:89–95

    Article  Google Scholar 

  • Chiplonkar GW (1987) Three decades of invertebrate palaeontology and biostratigraphy of marine Cretaceous rocks of India. Geol Surv Ind Spec Pub 11:305–339

    Google Scholar 

  • Coccioni R, Galeotti S (1994) K-T boundary extinction: geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera. Geology 22:779–782

    Article  Google Scholar 

  • Coccioni R, Fabbrucci L, Galeotti S (1993) Terminal Cretaceous deep-water benthic foraminiferal decimation, survivorship and recovery at Caravaca (SE Spain). Paleopelagos 3:3–24

    Google Scholar 

  • D’Hondt S, Donaghay P, Zachos JC, Luttenberg D, Lindinger M (1998) Organic carbon £uxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276–279

    Article  Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183

    Article  Google Scholar 

  • Evans NJ, Gregoire DC, Grieve RAF, Goodfellow WD, Veizer J (1993) Use of platinum-group elements for impaetor identification: terrestrial impact craters and Cretaceous-Tertiary boundary. Geochim Cosmochim Acta 57:3737–3748

    Article  Google Scholar 

  • Evans NJ, Ahrens TJ, Gregoire DC (1995) Fractionation of ruthenium from iridium at the Cretaceous-Tertiary boundary. Earth Planet Sci Lett 134:141–153

    Article  Google Scholar 

  • Frank TD, Arthur MA (1999) Tectonic forcings of Maastrichtian ocean-climate evolution. Palaeoceanography 14:103–117

    Article  Google Scholar 

  • Friedman GM (1967) Dynamic processes and statistical parametters compared for size frequency distribution of beach and river sands. J Sediment Petrol 37:327–354

    Article  Google Scholar 

  • Ganapathy R (1980) A major meteorite impact on the earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209:921–923

    Article  Google Scholar 

  • Glasby GP, Kunzendorf H (1996) Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism. Int J Earth Sci 85:191–210

    Google Scholar 

  • Govindhan A, Ravindran CN, Rangaraju MKR (1996) Cretaceous stratigraphy and planktonic foraminiferal zonation of Cauvery basin, South India. In: Sahni A (ed), Cretaceous stratigraphy and palaeoenvironments. Mem Geol Soc Ind. 37, pp 155–187

    Google Scholar 

  • Guha AK (1987) Palaeoecology of some upper Creaceous sediments of India – an approach based on bryozoan. Geol Surv Ind Spec Pub 11:419–429

    Google Scholar 

  • Guha AK, Senthilnathan D (1990) Onychocellids (Bryozoa: Cheilostomata) from the Ariyalur carbonate sediments of south India. J Palaeont Soc Ind 35:41–51

    Google Scholar 

  • Guha AK, Senthilnathan D (1996) Bryozoan fauna of the Ariyalur Group (Late Cretaceous) Tamil Nadu and Pondicherry, India. Palaeont Ind 49:2–17

    Google Scholar 

  • Hallam A (1981) Facies interpretation and the stratigraphic record. Freeman, San Francisco, 291p

    Google Scholar 

  • Hallam A (1987) End-Cretaceous mass extinction event: argument for terrestrial causation. Science 238:1237–1242

    Article  Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Hansen HJ, Mohabay DM (2000) New data on Indian K/T boundaries. In: Govindan A (ed) Cretaceous stratigraphy – an update. Mem Geol Soc Ind. 46, pp 419–420

    Google Scholar 

  • Hart MB, Feist SE, Hakansson E, Heinberg C, Price GD, Leng MJ, Watkinson MP (2005) The Cretaceous–Palaeogene boundary succession at Stevns Klint, Denmark: foraminifers and stable isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 224:6–26

    Article  Google Scholar 

  • Hsü KJ, He Q, McKenzie JA, Weissert H, Perch-Nielsen K, Oberhänsli H, Kelts K, LaBrecque J, Tauxe L, Krähenbuhl U, Percival SF Jr, Wright R, Karpoff A, Peterson N, Tucker P, Poore RZ, Gombos A Jr, Pisciotti K, Carman MF Jr, Schreiber E (1982) Mass mortality and its environmental and evolutionary consequences. Science 216:249–256

    Article  Google Scholar 

  • Jafar SA, Rai J (1989) Discovery of Albian nannoflora from type Dalmiapuram Formation, Cauvery basin, India – Palaeooceanographic remarks. Curr Sci 58:358–363

    Google Scholar 

  • Jiang MJ, Gartner S (1986) Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in east-central Texas. Micropalaeontology 32:232–255

    Article  Google Scholar 

  • Kale AS, Phansalkar VG (1992) Calcareous nannofossils from the Uttatur Group, Trichinopoly District, Tamil Nadu, India. J Palaeont Soc Ind 37:85–102

    Google Scholar 

  • Kale AS, Lotfalikani A, Phansalkar VG (2000) Calcareous nanofossils from the Uttatur group of Trichinopoly Cretaceous, South India. In: Govindan A (ed) Cretaceous stratigraphy – an update. Mem Geol Soc Ind. 46, pp 213–227

    Google Scholar 

  • Kaminski MA, Malmgren BA (1989) Stable isotope and trace element stratigraphy across the Cretaceous/Tertiary boundary in Denmark. Geol Fören Stockholm Förhand 111:305–312

    Article  Google Scholar 

  • Karoui-Yaakoub N, Zaghbib-Turki D, Keller G (2002) The Cretaceous/Tertiary (K/T) mass extinction in planktic foraminifera at Elles I and El Melah, Tunisia. Palaeogeogr Palaeoclimat Palaeoecol 178:233–255

    Article  Google Scholar 

  • Kauffman EC (1984) The fabric of Cretaceous marine extinction. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton University Press, Princeton, pp 151–246

    Google Scholar 

  • Keller G (1988a) Biotic turnover in benthic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 66:153–171

    Article  Google Scholar 

  • Keller G (1988b) Extinction, survivorship and evolution of planktonic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar Micropalaeont 13:239–263

    Article  Google Scholar 

  • Keller G, Stinnesbeck W (1996) Sea level changes, clastic deposits and megatsunamis across the Cretaceous-Tertiary boundary at El Kef, Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 73:243–265

    Article  Google Scholar 

  • Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254

    Article  Google Scholar 

  • Keller G, Lopez-Oliva JG, Stinnesbeck W, Adatte T (1997) Age, stratigraphy and deposition of near K/T siliciclastic deposits in Mexico: relation to bolide impact? Geol Soc Am Bull 109:410–428

    Article  Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stüben D, Kramar U, Berner Z, Li L, Perch-Nielsen KVS (1998) The Cretaceous-Tertiary transition on the shallow Saharan platform of southern Tunisia. Geobios 30:951–975

    Article  Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Luciani V, Karoui-Yakoubi N, Zaghbib-Turki D (2002a) Palaeoecology of the Cretaceous-Tertiary mass extinction in planktic foraminifera. Palaeogeogr Palaeoclimat Palaeoecol 178:257–297

    Article  Google Scholar 

  • Keller G, Adatte T, Burns SJ, Tantawy AA (2002b) High-stress paleoenvironment during the late Maastrichtian to early Paleocene in Central Egypt. Palaeogeogr Palaeoclimat Palaeoecol 187:35–60

    Article  Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, Stüben D (2003) Multiple impacts across the Cretaceous–Tertiary boundary. Earth Sci Rev 62:327–363

    Article  Google Scholar 

  • Kramar U, Stüben D, Berner Z, Stinnesbeck W, Philipp H, Keller G (2001) Are Ir anomalies sufficient and unique indicators for cosmic events? Planet Space Sci 49:831–837

    Article  Google Scholar 

  • Kuhnt W, Kaminski MA (1993) Changes in the community structure of deep water agglutinated foraminifer across the K/T boundary in the Basque Basin (Northern Spain). Rev Esp Micropaleontol 25:57–92

    Google Scholar 

  • Kuhnt W, Hess S, Holbourn A, Paulsen H, Salomon B (2005) The impact of the 1991 Mt.Pinatubo eruption on deepsea foraminiferal communities: a model for the Cretaceous-Tertiary (K/T) boundary? Palaeogeogr Palaeoclimatol Palaeoecol 224:83–107

    Article  Google Scholar 

  • Lamolda MA, Melinte MC, Kaiho K (2005) Nannofloral extinction and survivorship across the K/T boundary at Caravaca, southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 224:27–52

    Article  Google Scholar 

  • Lemon RR (1990) Principles of stratigraphy. Merrill Publishing, Columbus, 431p

    Google Scholar 

  • Lopez-Oliva JG, Keller G (1996) Age and stratigraphy of near K/T boundary clastic deposits in northeastern Mexico. In: Fastovsky RG, Gartner S (eds) The Cretaceous–Tertiary event and other catastrophes in Earth history Geol Soc Am Spec Paper. 307, pp 227–242

    Google Scholar 

  • Luciani V (2002) High-resolution planktonic foraminiferal analysis from the Cretaceous-Tertiary boundary at Ain Settara (Tunisia): evidence of an extended mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 178:299–319

    Article  Google Scholar 

  • Masthan SJ (1978) Depositional environments of Kallamedu sandstone, Masstrichtian, Ariyalur area, South India. Geol Min Metal Soc Ind 15:61–70

    Google Scholar 

  • Meyers PA, Simoneit RT (1989) Global comparisons of organic matter in sediments across the Cretaceous/Tertiary boundary. Adv Org Geochem 16:641–648

    Article  Google Scholar 

  • Mitrovic-Petrovic JM, Ramamoorthy K (1993) Functional morphology of Stigmatophygus elatus (Echinoidea: Cassidoloida) form the lower Maastrichtian of southern India. Geol Balkan Polust 56:119–135

    Google Scholar 

  • Moiola RJ, Weiser D (1968) Textural parameters: an evaluation. J Sediment Petrol 38:45–53

    Google Scholar 

  • Molina E, Arenillas I, Arz JA (1998) Mass extinction in planktonic foraminifera at the Cretaceous/Tertiary boundary in subtropical to temperate latitudes. Bull Geol Soc France 169:351–372

    Google Scholar 

  • Mount JF, Margolis SV, Showers W, Ward P, Doehne E (1986) Carbon and oxygen isotope stratigraphy of the upper Maastrichtian, Zumaya, Spain: a record of oceanographic and biologic changes at the end of the Cretaceous period. Palaios 1:87–92

    Article  Google Scholar 

  • Nair KM, Vijayam BE (1980) Sedimentology of limestones in Niniyur Formation, Palaeocene, Cauvery basin, South India. J Geol Soc Ind 21:503–510

    Google Scholar 

  • Newell ND (1967) Revolutions in the history of life. Geol Soc Am Spl Paper 89:63–91

    Google Scholar 

  • Passega R (1957) Texture as characteristic of clastic deposition. Am Assoc Petrol Geol Bull 41:1952–1984

    Google Scholar 

  • Paul CRC (2005) Interpreting bioevents: what exactly did happen to planktonic foraminifers across the Cretaceous–Tertiary boundary? Palaeogeogr Palaeoclimatol Palaeoecol 224:291–310

    Article  Google Scholar 

  • Powell C, Mc A, Roots SR, Veevers JJ (1988) Pre-break up continental extension in east Gondwanaland and the early opening of the Indian Ocean. Tectonophysics 155:261–283

    Article  Google Scholar 

  • Prokoph AR, Rampino MR, El Bilali H (2004) Periodic components in the diversity of calcareous plankton and geological events over the past 230 Myr. Palaeogeogr Palaeoclimatol Palaeoecol 207:105–125

    Article  Google Scholar 

  • Rai J, Ramkumar M, Sugantha T (2013) Calcareous Nannofossils from the Ottakoil Formation, Cauvery Basin, South India: Implications on Age and Late Cretaceous Environmental conditions In: Ramkumar M (ed) On the sustenance of the Earth’s Natural resources, Springer-Verlag, Heidelberg, pp 109–122

    Google Scholar 

  • Ramanathan S (1968) Stratigraphy of the Cauvery basin with reference to its oil prospects. In: Cretaceous–Tertiary of south India. Mem Geol Soc Ind 2:153–167

    Google Scholar 

  • Ramasamy S, Banerji RK (1991) Geology, petrography and stratigraphy of pre Ariyalur sequence in Tiruchirapalli District, Tamil Nadu. J Geol Soc Ind 37:577–594

    Google Scholar 

  • Ramkumar M (1995) Geology, petrology and geochemistry of the Kallankurichchi Formation (Lower Maestrichtian), Ariyalur Group, south India. Unpublished Ph.D. thesis submitted to the Bharathidasan University, Tiruchy, India

    Google Scholar 

  • Ramkumar M, Chandrasekaran VA (1996) Megafauna and environmental conditions of Kallankurichchi Formation (Lower Maestrichtian), Ariyalur Group, Tiruchy district, south India. J Geol Asson Res Centre 4:38–45

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z, Schneider J (2004a) Geochemical and isotopic anomalies preceding K/T boundary in the Cauvery basin, South India: implications for the end Cretaceous events. Curr Sci 87:1738–1747

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2004b) Lithostratigraphy, depositional history and sea level changes of the Cauvery basin, South India. Ann Geol Penins Balk 65:1–27

    Google Scholar 

  • Ramkumar M, Harting M, Stüben D (2005) Barium anomaly preceding K/T boundary: plausible causes and implications on end Cretaceous events of K/T sections in Cauvery basin (India), Israel, NE-Mexico and Guatemala. Int J Earth Sci 94:475–489

    Article  Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2006) Elemental interrelationships and depositional controls of Barremian–Danian strata of the Cauvery basin, South India: implications on scales of chemostratigraphic modeling. Ind J Geochem 21:341–367

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2009) Episodes of phosphorus accumulation in the Cauvery basin, South India: implications on palaeoclimate, productivity and weathering. Curr Sci 97:251–256

    Google Scholar 

  • Ramkumar M, Anbarasu K, Sugantha T, Rai J, Sathish G, Suresh R (2010a) Occurrence of KTB exposures and Dinosaur nesting site near Sendurai India – an initial report. Ultra Sci 22:573–584

    Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2010b) Hierarchical delineation and multivariate stratistical discrimination of chemozones of the Cauvery basin, South India: implications on spatio-temporal scales of stratigraphic correlation. Petrol Sci 7:435–447

    Article  Google Scholar 

  • Ramkumar M, Stüben D, Berner Z (2011) Barremian–Danian chemostratigraphic sequences of the Cauvery basin, India: implications on scales of stratigraphic correlation. Gond Res 19:291–309

    Article  Google Scholar 

  • Rao AT, Rao S, Vijayakumar V (2002) Basic volcanism along K-T boundary from Rajahmundry, East coast of India. J Geol Soc Ind 60:583–586

    Google Scholar 

  • Raup DM (1986) Periodic extinction of families and genera. Science 231:833–836

    Article  Google Scholar 

  • Renard M, Richebois G, Letolle R (1984) Trace element and stable isotope geochemistry of Paleocene to Coniacian carbonate samples from Hole 516F, comparison with North Atlantic and Tethys sites. In: Barker PF, Johnson DA, Carlson RL, Cepek P, Coulbourn WT, Gamboa LA, Hamilton N, de Melo U, Pujol C, Shor AN, Suzyumov AE, Tjalsma LRC, Walton WH (eds). Initial reports of the deep sea drilling project. vol 72. pp 399–420

    Google Scholar 

  • Romein AJT, Smit J (1981) Carbon-oxygen stable isotope stratigraphy of the Cretaceous-Tertiary boundary interval: data from the Biarritz section (SW France). Geol Jijnb 60:514–544

    Google Scholar 

  • Saito T, Yamamoi T, Kaiho K (1986) End-Cretaceous devastation of terrestrial flora in the boreal Far East. Nature 323:253–255

    Article  Google Scholar 

  • Saraswati PK, Ramesh R, Navada SV (1993) Palaeogene isotopic temperatures of western India. Lethaia 26:89–98

    Article  Google Scholar 

  • Sastry MVA, Rao BRJ (1964) Cretaceous-Tertiary boundary in south India. In: Procceedings of international geological congress XXII on Cretaceous-Tertiary boundary including volcanic activity. Section.3 Part III, pp 92–103

    Google Scholar 

  • Sastry MVA, Mamgain VD, Rao BRJ (1972) Ostracod fauna of the Ariyalur Group (Upper Cretaceous), Trichinopoly district, Tamil Nadu. Palaeont Ind Ser 40:1–48

    Google Scholar 

  • Sawlowicz Z (1993) Iridium and other platinum-group elements as geochemical markers in sedimentary environments. Palaeogeogr Palaeoclimatol Palaeoecol 104:253–270

    Article  Google Scholar 

  • Schmitz B (1992) Chalcophile elements and Ir in continental Cretaceous-Tertiary boundary clays from the western interior of the USA. Geochim Cosmochim Acta 56:1695–1703

    Article  Google Scholar 

  • Shackleton NJ, Hall MA (1984) Carbon isotope data from Leg 74 sediments. In: Moore TC Jr, Rabinowitz PD, Boersma A, Borella PE, Chave AD, Duee G, Futterer DK, Jiang MJ, Kleinert K, Lever A, Manivit H, O’Connel S, Richardson SH, Shackleton NJ (eds) Initial reports of the deep sea drilling project. vol 74, pp 613–619

    Google Scholar 

  • Shrivastava JP, Ahmad M (2005) Compositional studies on organic matter from iridium enriched Anjar intertrappean sediments: Deccan volcanism and palaeoenvironmental implications during the Cretaceous/Tertiary boundary. J Iber Geol 31:167–177

    Google Scholar 

  • Sloan RW, Rigby JK Jr, van Valen LM, Gabriel D (1986) Gradual Dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science 232:629–633

    Article  Google Scholar 

  • Smit J (1982) Extinction and evolution of planktic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol Soc Am Spec Paper 190:329–352

    Google Scholar 

  • Smit J, Hertogen J (1980) An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285:198–200

    Article  Google Scholar 

  • Srivastava SK (1994) Palynology of the Cretaceous-Tertiary boundary in the Scollard Formation of Alberta, Canada, and global KTB events. Rev Palaeobot Palynol 83:137–158

    Article  Google Scholar 

  • Stewart HB Jr (1958) Sedimentary reflections on depositional environment in San Migne lagoon, Baja California, Mexico. Am Assoc Petrol Geol Bull 42:2567–2618

    Google Scholar 

  • Stinnesbeck W, Keller G, Adatte T, Lopez-Oliva JG, MacLeod N (1996) Cretaceous-Tertiary boundary clastic deposits in Northeastern Mexico: impact Tsunami or sealevel lowstand. In: MacLeod N, Keller G (eds) Cretaceous/Tertiary boundary mass extinction: biotic and environmental changes. W.W. Norton, New York, pp 471–517

    Google Scholar 

  • Stüben D, Kramar U, Berner Z, Stinnesbeck W, Keller G, Adatte T (2002) Trace elements, stable isotopes and clay mineralogy of the Elles II K-T section in Tunisia: indications for sea level fluctuations and primary productivity. Palaeogeogr Palaeoclimatol Palaeoecol 178:321–345

    Article  Google Scholar 

  • Stüben D, Kramar U, Berner Z, Meudt M, Keller G, Abramovich S, Adatte T, Hambach U, Stinnesbeck W (2003) Late Maastrichtian paleoclimatic and paleoceanographic changes inferred from Sr/Ca ratio and stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 199:107–127

    Article  Google Scholar 

  • Stüben D, Kramar U, Harting M, Stinnesbeck W, Keller G (2005) High-resolution geochemical record of Cretaceous-Tertiary boundary sections in Mexico: new constraints on the K/T and Chicxulub events. Geochim Cosmochim Acta 69:2559–2579

    Article  Google Scholar 

  • Sundaram R, Rao PS (1986) Lithostratigraphy of Cretaceous and Paleocene rocks of Tiruchirapalli district, Tamil Nadu, south India. Record Geol Surv Ind 116:11–23

    Google Scholar 

  • Sutherland FL (1994) Volcanism around K/T boundary time - its role in an impact scenario for the K/T extinction events. Earth Sci Rev 36:1–26

    Article  Google Scholar 

  • Tewari A, Hart MB, Watkinson MP (1996) A revised lithostratigraphic classification of the Cretaceous rocks of the Trichinopoly district, Cauvery Basin, southeast India. In: Contributions to the XV colloquium on micropalaeontology and stratigraphy, pp 789–800

    Google Scholar 

  • Thierstein HR (1981) Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary, SEPM.Spl Pub. 32:355–394

    Google Scholar 

  • Thomas E (1990a) Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proc ODP Sci Result 113:571–594

    Google Scholar 

  • Thomas E (1990b) Late Cretaceous–early eocene mass extinctions in the deep sea. Geol Soc Am Spec Pub 247:481–495

    Google Scholar 

  • Tripathi C, Mamgain VD (1987) Record of vitric tuff from the Late Cretaceous/Early Palaeocene strata of Tiruchirapalli District, Tamil Nadu and its significance. Bull Ind Geol Assoc 20:9–16

    Google Scholar 

  • Tschudy RH, Pillmore CL, Orth CJ, Gilmore JS, Knight JD (1984) Disruption of the terrestrial plant ecosystem at the Cretaceous/Tertiary boundary, western interior. Science 225:1030–1032

    Article  Google Scholar 

  • Venkatachala BS, Sharma KD (1974) Palynology of the Cretaceous sediments from the subsurface of Virdhachalam area, Cauvery basin. Geophytology 4:153–183

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Williams DF, Healy-Williams N, Thunell RC, Baruch BW, Leventer A (1983) Detailed stable isotope and carbonate records from the upper Maastrichtian-lower Paleogene section of Hole 516F (Leg 72) including the Cretaceous/Tertiary boundary. In: Barker PF, Johnson DA, Carlson RL, Cepek P, Coulbourn WT, Gamboa LA, Hamilton N, de Melo U, Pujol C, Shor AN, Suzyumov AE, Tjalsma LRC, Walton WH (eds) Initial reports of the deep sea drilling project. vol 72, pp 921–929

    Google Scholar 

  • Zachos JC, Arthur MA (1986) Paleoceanography of the Cretaceous/Tertiary boundary event: inferences from stable isotope and other data. Palaeoceanography 1:5–26

    Article  Google Scholar 

  • Zhao Z, Xue-Ving M, Zhi-Fang C, Gao-Chuang Y, Kong P, Ebihara M, Zhen-Hua Z (2002) A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: evidence from dinosaur eggshells. Palaeogeogr Palaeoclimatol Palaeoecol 178:1–17

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from University Grants Commission, New Delhi. Dr. N.C.Mehrotra, Director, Birbal Sahni Institute of Palaeobotany (BSIP), Lucknow is thanked for permitting the scientific collaboration between Department of Geology, Periyar University, Salem and BSIP, Lucknow. He is also thanked for having provided access to necessary research equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sugantha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramkumar, M., Sugantha, T., Rai, J. (2013). Lithofacies and Granulometric Characteristics of the Kallamedu Formation, Ariyalur Group, South India: Implications on Cretaceous-Tertiary Boundary Events. In: Ramkumar, M. (eds) On a Sustainable Future of the Earth's Natural Resources. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32917-3_15

Download citation

Publish with us

Policies and ethics