Skip to main content

Using Sensorimotor Contingencies for Terrain Discrimination and Adaptive Walking Behavior in the Quadruped Robot Puppy

  • Conference paper
From Animals to Animats 12 (SAB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7426))

Included in the following conference series:

Abstract

In conventional “sense-think-act” control architectures, perception is reduced to a passive collection of sensory information, followed by a mapping onto a prestructured internal world model. For biological agents, Sensorimotor Contingency Theory (SMCT) posits that perception is not an isolated processing step, but is constituted by knowing and exercising the law-like relations between actions and resulting changes in sensory stimulation. We present a computational model of SMCT for controlling the behavior of a quadruped robot running on different terrains. Our experimental study demonstrates that: (i) Sensory-Motor Contingencies (SMC) provide better discrimination capabilities of environmental properties than conventional recognition from the sensory signals alone; (ii) discrimination is further improved by considering the action context on a longer time scale; (iii) the robot can utilize this knowledge to adapt its behavior for maximizing its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnell, J.A., Bradley, D., Silver, D., Sofman, B., Stentz, A.: Learning for autonomous navigation. IEEE Robotics & Automation Magazine 17(2), 74–84 (2010)

    Article  Google Scholar 

  2. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11, 209–243 (2003)

    Article  Google Scholar 

  3. Dewey, J.: The reflex arc concept in psychology. Psychological Review 3, 357–370 (1896)

    Article  Google Scholar 

  4. Engel, A.K.: Directive minds: how dynamics shapes cognition. In: Stewart, J., Gapenne, O., Di Paolo, E.A. (eds.) Enaction: Towards a New Paradigm for Cognitive Science, pp. 219–243. MIT Press, Cambridge (2011)

    Google Scholar 

  5. Gibson, E.J., Riccio, G., Schmuckler, M.A., Stoffregen, T.A., Rosenberg, D., Taromina, J.: Detection of traversability of surfaces by crawling and walking infants. Journal of Experimental Psychology 13(4), 533–544 (1987)

    Google Scholar 

  6. Giguere, P., Dudek, G.: Clustering sensor data for autonomous terrain identification using time-dependency. Autonomous Robots 26, 171–186 (2009)

    Article  Google Scholar 

  7. Harnad, S.: Cognition is categorization. In: Handbook of Categorization in Cognitive Science. Elsevier (2005)

    Google Scholar 

  8. Hoffmann, M., Pfeifer, R.: The implications of embodiment for behavior and cognition: animal and robotic case studies. In: The Implications of Embodiment: Cognition and Communication, pp. 31–58. Imprint Academic (2011)

    Google Scholar 

  9. Jackel, L.D., Krotkov, E., Perschbacher, M., Pippine, J., Sullivan, C.: The DARPA LAGR program: goals, challenges, methodology, and phase I results. Journal of Field Robotics 23(11/12), 945–973 (2006)

    Article  Google Scholar 

  10. Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks. PLoS Computational Biology 2 e144(10), 1301–1312 (2006)

    Article  Google Scholar 

  11. Maye, A., Engel, A.K.: A discrete computational model of sensorimotor contingencies for object perception and control of behavior. In: 2011 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3810–3815. IEEE (May 2011)

    Google Scholar 

  12. Maye, A., Engel, A.K.: Time Scales of Sensorimotor Contingencies. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS (LNAI), vol. 7366, pp. 240–249. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Möller, R., Schenck, W.: Bootstrapping cognition from behavior – a computerized thought experiment. Cognitive Science 32(3), 504–542 (2008)

    Article  Google Scholar 

  14. Noë, A.: Action in perception. MIT Press (2004)

    Google Scholar 

  15. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24, 939–1031 (2001)

    Article  Google Scholar 

  16. Pfeifer, R., Scheier, C.: Sensory-motor coordination: The metaphor and beyond. Robotics and Autonomous Systems 20, 157–178 (1997)

    Article  Google Scholar 

  17. Reinstein, M., Hoffmann, M.: Dead reckoning in a dynamic quadruped robot: Inertial navigation system aided by a legged odometer. In: 2011 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 617–624 (2011)

    Google Scholar 

  18. Sirigu, A., Duhamel, J.R., Poncet, M.: The role of sensorimotor experience in object recognition. A case of multimodal agnosia. Brain: A Journal of Neurology 114(pt. 6), 2555–2573 (1991)

    Article  Google Scholar 

  19. Ugur, E., Oztop, E., Sahin, E.: Goal emulation and planning in perceptual space using learned affordances. Robotics and Autonomous Systems 59, 580–595 (2011)

    Article  Google Scholar 

  20. Ugur, E., Sahin, E.: Traversability: a case study for learning and perceiving affordances in robots. Adaptive Behavior 18, 258–284 (2010)

    Article  Google Scholar 

  21. Webots. Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com

  22. Wolk, D.A., Coslett, H.B., Glosser, G.: The role of sensory-motor information in object recognition: Evidence from category-specific visual agnosia. Brain and Language 94(2), 131–146 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, M., Schmidt, N.M., Pfeifer, R., Engel, A.K., Maye, A. (2012). Using Sensorimotor Contingencies for Terrain Discrimination and Adaptive Walking Behavior in the Quadruped Robot Puppy. In: Ziemke, T., Balkenius, C., Hallam, J. (eds) From Animals to Animats 12. SAB 2012. Lecture Notes in Computer Science(), vol 7426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33093-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33093-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33092-6

  • Online ISBN: 978-3-642-33093-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics