Skip to main content

δ-TRIMAX: Extracting Triclusters and Analysing Coregulation in Time Series Gene Expression Data

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

In an attempt to analyse coexpression in a time series microarray gene expression dataset, we introduce here a novel, fast triclustering algorithm δ-TRIMAX that aims to find a group of genes that are coexpressed over a subset of samples across a subset of time-points. Here we defined a novel mean-squared residue score for such 3D dataset. At first it uses a greedy approach to find triclusters that have a mean-squared residue score below a threshold δ by deleting nodes from the dataset and then in the next step adds some nodes, keeping the mean squared residue score of the resultant tricluster below δ. So, the goal of our algorithm is to find large and coherent triclusters from the 3D gene expression dataset. Additionally, we have defined an affirmation score to measure the performance of our triclustering algorithm for an artificial dataset. To show biological significance of the triclusters we have conducted GO enrichment analysis. We have also performed enrichment analysis of transcription factor binding sites to establish coregulation of a group of coexpressed genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29(4), 1165–1188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, D., et al.: JunD and JunB integrate prostaglandin E2 activation of breast cancer-associated proximal aromatase promoters. Mol. Endocrinol. 25(5), 767–775 (2011)

    Article  Google Scholar 

  4. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. Int. Conf. Int. Syst. Mol. Biol., pp. 93–103 (2000)

    Google Scholar 

  5. Chhabra, A., et al.: Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncology Reports 18(4), 953–958 (2007)

    Google Scholar 

  6. Mukhopadhyay, A., et al.: A novel coherence measure for discovering scaling biclusters from gene expression data. Journal of Bioinformatics and Computational Biology 7(5), 853–868 (2009)

    Article  Google Scholar 

  7. Prelic, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)

    Article  Google Scholar 

  8. Wingender, E., et al.: The TRANSFAC system on gene expression regulation. Nucleic Acids Res. 29(29), 281–283 (2001)

    Article  Google Scholar 

  9. Boyle, E.I., et al.: GO:TermFinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20(18), 3710–3715 (2004)

    Article  Google Scholar 

  10. Lanigan, F., et al.: Homeobox transcription factor muscle segment homeobox 2(Msx2) correlates with good prognosis in breast cancer patients and induces apoptosis in vitro. Breast Cancer Research 12(R59) (2010)

    Google Scholar 

  11. Carroll, J.S., et al.: Genome-wide analysis of estrogen receptor binding sites. Nature Genetics 38(11) (November 2006)

    Google Scholar 

  12. Magnani, L., et al.: PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLOS Genetics 7(11) (November 2011)

    Google Scholar 

  13. Fougere, M., et al.: NFAT3 transcription factor inhibits breast cancer cell motility by targeting the Lipocalin 2 gene. Oncogene 29(15), 2292–2301 (2010)

    Article  Google Scholar 

  14. Yoeli-Lerner, M., et al.: Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Molecular Cell 20(4), 539–550 (2005)

    Article  Google Scholar 

  15. Khan, S., et al.: Role of specificity protein transcription factors in estrogeninduced gene expression in mcf-7 breast cancer cells. Journal of Molecular Endocrinology 39, 289–304 (2007)

    Article  Google Scholar 

  16. Tommasi, S., et al.: Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Research 11(R14) (2009)

    Google Scholar 

  17. Lee, S.Y., et al.: Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Molecular Cancer 10(113) (2011)

    Google Scholar 

  18. Zhang, S.Y., et al.: E2F-1: a proliferative marker of breast neoplasia. Cancer Epidemiology, Biomarkers & Prevention 9, 395–401 (2000)

    Google Scholar 

  19. Maeda, T., et al.: TEF-1 transcription factors regulate activity of the mouse mammary tumor virus LTR. Biochemical and Biophysical Research Communications 296(5), 1279–1285 (2002)

    Article  Google Scholar 

  20. Stevens, T.A., et al.: BARX2 and estrogen receptor-alpha (ESR1) coordinately regulate the production of alternatively spliced esr1 isoforms and control breast cancer cell growth and invasion. Oncogene 25, 5426–5435 (2006)

    Article  MathSciNet  Google Scholar 

  21. Jauliac, S., et al.: The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology 4(7), 540–544 (2002)

    Article  Google Scholar 

  22. Falcon, S., Gentleman, R.: Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257–258 (2007)

    Article  Google Scholar 

  23. Zhao, L., Zaki, M.J.: TRICLUSTER: An effective algorithm for mining coherent clusters in 3D microarry data. In: SIGMOD (June 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhar, A., Haubrock, M., Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Wingender, E. (2012). δ-TRIMAX: Extracting Triclusters and Analysing Coregulation in Time Series Gene Expression Data. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics