Skip to main content

Surface Magnetism: Relativistic Effects at Semiconductor Interfaces and Solar Cells

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

Ab initio calculations of the electronic g-tensor of paramagnetic states at surfaces and solar cells are presented, whereby special emphasis is given onto the influence of relativistic effects. After discussing the numerical requirements for such calculations, we show that for silicon surfaces the g-tensor varies critically with the hydrogen coverage, and provides an exceptionally characteristic property. This holds also in the case of powder spectra where only the isotropic part g av is available from experiments. Extending our calculations onto microcrystalline 3C-SiC, our study explains why sol-gel grown undoped material can serve as an excellent acceptor material for an effective charge separation in organic solar cells: Due to an auto-doping mechanism by surface-induced states it fits excellently into the energy level scheme of this kind of solar cell and has the potential to replace the usually used rather expensive fullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In comparison with cells based on amorphous silicon suffer less from the notorious light-induced degradation, known as the Staebler-Wronski effect [7]. Best cell performance is, however, achieved for material grown close to the transition to amorphous growth [8].

  2. 2.

    In the scalar relativistic treatment Φ L is caculated solving Dirac’s equation but thereby ignoring spin-orbit interactions. This leaves the electron spin as a “good” quantum number. Already in a scalar relativistic treatment, s-like wave functions diverge at the nuclear site (if the nucleus is taken to be a point charge).

  3. 3.

    For spin-polarized calculations, the second spin channel is realized by doubling the k-point set.

References

  1. Ch.J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 (2002).

    Google Scholar 

  2. U. Gerstmann, E. Rauls, S. Greulich-Weber, E.N. Kalabukhova, D.V. Savchenko, A. Pöppl, and F. Mauri, Mat. Sci. Forum 556–557, 391 (2006).

    Google Scholar 

  3. U. Gerstmann, A.P. Seitsonen, F. Mauri, and J. von Bardeleben, Mat. Sci. Forum 615–617, 357 (2009).

    Article  Google Scholar 

  4. U. Gerstmann, A.P. Seitsonen, and F. Mauri, phys. stat. sol. (b) 245, 924 (2008).

    Google Scholar 

  5. E.I. Rashba, Fiz. Tverdogo Tela 2, 1224 (1960); Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  6. E. Vallet-Sauvain, U. Kroll, J. Meier, A. Sah, and J. Pohl, J. Appl. Phys. 87, 3137 (2000).

    Article  Google Scholar 

  7. D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977).

    Article  Google Scholar 

  8. S. Klein, F. Finger, R. Carius, T.Dylla, B. Rech, M. Grimm, L. Houben, and M. Stutzmann, Thin Solid Flms 430, 202, (2003).

    Article  Google Scholar 

  9. Ch.J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).

    Google Scholar 

  10. F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur, and M. Günes, IEE Proc.-Circuits Devices Syst. 150, 309 (2003).

    Google Scholar 

  11. U. Gerstmann, M. Rohrmüller, F. Mauri, and W.G. Schmidt, phys. stat. sol. (c) 7, 157 (2010).

    Google Scholar 

  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  Google Scholar 

  13. P.E. Blöchl, Phys. Rev. B 62, 6158 (2000).

    Article  Google Scholar 

  14. U. Gerstmann, phys. stat. solidi (b) 248, 1319 (2011); p. 305–339 in “Advanced Calculations for Defects in Materials” edited by A. Alkauskas, P. Deák, J. Neugebauer, A. Pasquarello, and C.G. Van de Walle, Wiley-VCH, Weinheim, 2011.

    Google Scholar 

  15. E. Fermi, Z. Phys. 60, 320 (1930).

    Article  MATH  Google Scholar 

  16. G. Breit, Phys. Rev. 35, 1447 (1930).

    Article  MATH  Google Scholar 

  17. S. Blügel, H. Akai, R. Zeller, P.H. Dederichs, Phys. Rev. B. 35, 3271 (1987).

    Article  Google Scholar 

  18. H.A. Bethe, J.W. Negele, Nucl. Phys. A 117, 575 (1968).

    Article  Google Scholar 

  19. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009); http://www.quantum-espresso.org.

  20. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  21. J. Dabrowski in Silicon Surfaces and Formation of Interfaces ed. by J. Dabrowski and H.J. Müssig, p. 82–204 (World Scientific, Singapure 2000).

    Google Scholar 

  22. N.S. Saricifti, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474 (1992).

    Article  Google Scholar 

  23. C.J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzatti, J.C. Hummelen, N.S. Saricifti, Chem. Phys. Lett. 340, 232 (2001).

    Article  Google Scholar 

  24. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995).

    Article  Google Scholar 

  25. Q. Fan, B. McQuillin, D.D.C. Bradley, S. Whitelegg, A.B. Seddon, Chem. Phys. Lett. 347, 325–330 (2001).

    Article  Google Scholar 

  26. J.J. Cole, X. Wang, R.J. Knuesel, and H.O. Jacobs, Nano Lett. 8, 1477–1481 (2008).

    Article  Google Scholar 

  27. S. Ogawa, Appl. Phys. 46, 518–522 (2007).

    Google Scholar 

  28. N. T. Son, Mt. Wagner, C. G. Hemmingsson, L. Storasta, B. Magnusson, W. M. Chen, S. Greulich-Weber, J. -M. Spaeth, and E. Janzen, in Silicon Carbide, Recent Major Advancs, Eds. W. J. Choyke, H. Matsunami, G. Pensel, Springer Berlin, Heidelberg 2004, 461–492, ISBN 3-540-40458-9.

    Google Scholar 

  29. V. Yu. Aristov, phys. usp. 44, 761 (2001).

    Google Scholar 

  30. Wenchang Lu, W.G. Schmidt, E.L. Briggs, and J. Bernholc, Phys. Rev. Lett. 85, 4381–4384 (2000).

    Google Scholar 

  31. B. Friedel, S. Greulich-Weber, Mater. Res. Soc. Symp. Proc. 963, 0963-Q15-10, Materials Research Society (2007).

    Google Scholar 

  32. A. Konopka, S. Greulich-Weber, E. Rauls, W.G. Schmidt, and U. Gerstmann, Mater. Res. Soc. Symp. Proc. 1322, mrss11-1322-b10-02 (2011).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the DFG as well as supercomputer time provided by the HLRS Stuttgart and the Paderborn PC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerstmann, U. et al. (2013). Surface Magnetism: Relativistic Effects at Semiconductor Interfaces and Solar Cells. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_12

Download citation

Publish with us

Policies and ethics