Skip to main content

Simulation of Compressible Viscous Flow with an Immersed Boundary Method

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12
  • 1619 Accesses

Abstract

An immersed boundary method combined with a wall-layer approach has been implemented into an established flow solver. In the outer flow field, the compressible Navier-Stokes equations are solved using an approximate Riemann Solver whereas simplified boundary-layer equations are solved near the wall. Turbulence is accounted for by the one-equation model of Spalart-Allmaras in the outer flow region and by a mixing length eddy viscosity model with near wall damping in the wall layer. Computations performed for various test cases show good agreement with reference data found in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fadlun E A, Verzicco R, Orlandi P, Mohd-Yusof, J. Combined immersed-boundary finite difference methods for three-dimensional complex flow simulations. J. Comp. Phys., 161, 35–60, 2000.

    MathSciNet  MATH  Google Scholar 

  2. Mohd-Yosuf, J. Combined immersed-boundary/B-spline methods for Simulations of flow in complex geometries. Annual Research Briefs, Center of Turbulence Research, 317–328, 1997.

    Google Scholar 

  3. Balaras, E et al. Two-layer approximate boundary conditions for large-eddy simulations. AIAA Journal, 34, pp. 1111–1119, 1996.

    Article  MATH  Google Scholar 

  4. Cabot, W, Moin, P. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63, pp. 269–291, 1999.

    Article  Google Scholar 

  5. Wang, M, Moin, P. Dynamic wall modeling for LES of complex turbulent flows. Physics of Fluids, 14, pp. 2043–2051, 2002.

    Article  MathSciNet  Google Scholar 

  6. Tessicini, F, Iaccarino, G, Fatica, M, Wang, M, Verzicco, R. Wall modeling for large-eddy simulation using an immersed boundary method. Annual Research Briefs, Center of Turbulence Research, pp. 181–187, 2002.

    Google Scholar 

  7. Bond, R B, Blottner, F G. Derivation, implementation, and initial testing of a compressible wall-layer model. Int. J. Numer. Meth. Fluids, 66, pp. 1183–1206, 2011.

    MathSciNet  MATH  Google Scholar 

  8. Magagnato, F. KAPPA Karlsruhe Parallel Program for Aerodynamics, TASK Quarterly Vol. 2, 2, pp. 215–270, 1998.

    Google Scholar 

  9. Verzicco, R, Iaccarino, G. Immersed Boundary Technique for Large-Eddy-Simulation. Lecture series on Large Eddy Simulation and related techniques: Theory and Applications”, 2006.

    Google Scholar 

  10. Toro, E F, Spruce, M, Speares, M. Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, pp. 25–34, 1994.

    Article  MATH  Google Scholar 

  11. Blasius, H. Grenzschichten in Fluessigkeiten mit kleiner Reibung. Z. Math. Physik, 56, pp. 1–37, 1908.

    Google Scholar 

  12. Wieghardt, K, Tillman, W. On the Turbulent Friction Layer for Rising Pressure. NACA TM-1314, 1951.

    Google Scholar 

  13. Sucker, D, Brauer, H. Fluiddynamik bei quer angestroemten Zylindern. Waerme- und Stoffuebertragung, 8, pp. 149–158, 1975.

    Article  Google Scholar 

  14. Dennis, S C R, Chang, G Z. Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100. Journal of Fluid Mechanics, 42, pp. 471–489, 1970.

    Article  MATH  Google Scholar 

  15. Linnick, M N, Fasel, H F. A high-order immersed boundary method for unsteady incompressible flow calculations. J. Comp. Phys., 204, pp. 157–192, 2005.

    MathSciNet  MATH  Google Scholar 

  16. Liu, C, Zheng, X, Sung, C H. Preconditioned Multigrid Methods for Unsteady Incompressible Flows. J. Comp. Phys., 139, pp. 35–57, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jastrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jastrow, B., Magagnato, F. (2013). Simulation of Compressible Viscous Flow with an Immersed Boundary Method. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_24

Download citation

Publish with us

Policies and ethics