Skip to main content

Differentiated Time-Frequency Characteristics Based Real-Time Motion Decoding for Lower Extremity Rehabilitation Exoskeleton Robot

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Included in the following conference series:

  • 4585 Accesses

Abstract

Decode the human motion intension precisely in real time is the key problem in coordinated control of the lower extremity exoskeleton. In this research, the relationship between frequency characteristics of sEMG (surface electromyographic) and muscle contraction is established in real time according to the biomechanism of skeletal muscle; DPSE (Differentiated Power Spectrum Estimation) method is applied to extract frequency characteristics from sEMG precisely and quickly; offset compensation is added to prevent noise disturbance during feature extracting of the sEMG with lower SNR (signal-to-noise ratio). Corresponding experiments on knee joint are conducted by prototype exoskeleton robot. EMGBFT (EMG Biofeedback therapy) based on force and haptic is applied as information feedback. Results show the human-machine interface can decode human motion intension and assist or resist movement of the wearer in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, B.Z., Kazerooni, H., Chu, A.: Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 11(2), 128–138 (2006)

    Article  Google Scholar 

  2. Riener, R., Lunenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 380–394 (2005)

    Article  Google Scholar 

  3. Lee, S., Sankai, Y.: Power assist control for leg with HAL-3 based on virtual torque and impedance adjustment. In: IEEE Int. Conf. Systems, Man and Cybernetics, pp. 256–267 (2002)

    Google Scholar 

  4. Singla, E., Dasgupta, B., Kondak, K., Hommel, G.: Optimal design of an exoskeleton hip using three-degrees-of-freedom spherical mechanism. In: ISR/Robotik 2006-Joint Conference on Robotics, Munich, pp. 10–19 (2006)

    Google Scholar 

  5. Banala, S., Kim, S., Agrawal, S., Scholz, J.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 2–8 (2009)

    Article  Google Scholar 

  6. Veneman, J., Kruidhof, R., Hekman, E., Ekkelenkamp, R., van Asseldonk, E., van der Kooij, H.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  7. Gordon, K., Ferris, D.: Learning to walk with a robotic ankle exoskeleton. J. Biomech. 40, 2636–2644 (2007)

    Article  Google Scholar 

  8. Low, K., Yin, Y.H.: An integrated lower exoskeleton system towards design of a portable active orthotic device. Int. J. Robot. Autom. 22(1), 32–42 (2007)

    Google Scholar 

  9. Yin, Y.H., Guo, Z., Chen, X., Fan, Y.J.: Study on biomechanics of skeletal muscle based on working mechanism of myosin motors: An overview. Chin. Sci. Bull. (in press, 2012)

    Google Scholar 

  10. Yin, Y.H., Guo, Z.: Collective mechanism of molecular motors and a dynamic mechanical model for sarcomere. Sci. China-Technol. Sci. 54(8), 2130–2137 (2011)

    Article  MATH  Google Scholar 

  11. Yin, Y.H., Chen, X.: Bioelectrochemical control mechanism with variable-frequency regulation for skeletal muscle contraction-Biomechanics of skeletal muscle based on the working mechanism of myosin motors (II). Sci. China -Technol. Sci. 55(8), 2115–2125 (2012)

    Article  Google Scholar 

  12. Yin, Y.H., Fan, Y.J., Xu, L.D.: EMG & EPP-Integrated Human-machine Interface between the Paralyzed and Rehabilitation Exoskeleton. IEEE T. Inf. Technol. B. 16(4), 542–549 (2012)

    Article  Google Scholar 

  13. Fan, Y.J., Yin, Y.H.: Mechanism Design and Motion Control of a Parallel Ankle Joint for Rehabilitation Robotic Exoskeleton. In: Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China, pp. 2527–2532 (2009)

    Google Scholar 

  14. Kaveh, M., Sridhar, K., Tom, C.: Real-Time Classification of Forearm Electromyographic Signals Corresponding to User-Selected Intentional Movements for Multifunction Prosthesis Control. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 535–542 (2007)

    Article  Google Scholar 

  15. Levi, J.H., Erik, J.S., Kevin, B.E., Bernard, S.H.: Multiple Binary Classifications via Linear discriminant Analysis for Improved controllability of a Powered Prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 18(1), 49–57 (2010)

    Article  Google Scholar 

  16. Bogey, R.A., Perry, J., Gitter, A.J.: An EMG-to-Force Processing Approach for Determining Ankle Muscle Forces During Normal Human Gait. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 302–310 (2005)

    Article  Google Scholar 

  17. Catherine, R.K., Daniel, P.F.: Medial Gastrocnemius Myoelectric Control of a Robotic Ankle Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 31–37 (2009)

    Article  Google Scholar 

  18. Kukolj, D., Levi, E.: Identification of complex systems based on neural and Takagi–Sugeno fuzzy model. IEEE Trans. Syst., Man, Cybern. B 34(1), 272–282 (2003)

    Article  Google Scholar 

  19. Lee, W.J., Ouyang, C.S., Lee, S.J.: Constructing neuro-fuzzy systems with TSK fuzzy rules and hybrid SVD-based learning. In: Proc. IEEE Int. Conf. Fuzzy Systems, pp. 1174–1179 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, Y., Yin, Y. (2012). Differentiated Time-Frequency Characteristics Based Real-Time Motion Decoding for Lower Extremity Rehabilitation Exoskeleton Robot. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics