Skip to main content

Learning and Transferring Geographically Weighted Regression Trees across Time

  • Conference paper
Modeling and Mining Ubiquitous Social Media (MUSE 2011, MSM 2011)

Abstract

The Geographically Weighted Regression (GWR) is a method of spatial statistical analysis which allows the exploration of geographical differences in the linear effect of one or more predictor variables upon a response variable. The parameters of this linear regression model are locally determined for every point of the space by processing a sample of distance decay weighted neighboring observations. While this use of locally linear regression has proved appealing in the area of spatial econometrics, it also presents some limitations. First, the form of the GWR regression surface is globally defined over the whole sample space, although the parameters of the surface are locally estimated for every space point. Second, the GWR estimation is founded on the assumption that all predictor variables are equally relevant in the regression surface, without dealing with spatially localized collinearity problems. Third, time dependence among observations taken at consecutive time points is not considered as information-bearing for future predictions. In this paper, a tree-structured approach is adapted to recover the functional form of a GWR model only at the local level. A stepwise approach is employed to determine the local form of each GWR model by selecting only the most promising predictors. Parameters of these predictors are estimated at every point of the local area. Finally, a time-space transfer technique is tailored to capitalize on the time dimension of GWR trees learned in the past and to adapt them towards the present. Experiments confirm that the tree-based construction of GWR models improves both the local estimation of parameters of GWR and the global estimation of parameters performed by classical model trees. Furthermore, the effectiveness of the time-space transfer technique is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrucci, C.S.A., Salvati, N.: The application of a spatial regression model to the analysis and mapping of poverty. Environmental and Natural Resources Series 7, 1–54 (2003)

    Google Scholar 

  2. Fotheringham, M.C.A.S., Brunsdon, C.: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley (2002)

    Google Scholar 

  3. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Appice, A., Ceci, M., Malerba, D.: Transductive learning for spatial regression with co-training. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.-C. (eds.) Proceedings of the 2010 ACM Symposium on Applied Computing (SAC 2010), pp. 1065–1070. ACM (2010)

    Google Scholar 

  5. Bogorny, V., Valiati, J.F., da Silva Camargo, S., Engel, P.M., Kuijpers, B., Alvares, L.O.: Mining maximal generalized frequent geographic patterns with knowledge constraints. In: ICDM 2006, pp. 813–817. IEEE Computer Society (2006)

    Google Scholar 

  6. Brunsdon, C., McClatchey, J., Unwin, D.: Spatial variations in the average rainfall-altitude relationships in great britain: an approach using geographically weighted regression. International Journal of Climatology 21, 455–466 (2001)

    Article  Google Scholar 

  7. Burnham, K., Anderson, D.: Model selection and multimodel inference: a practical information-theoretic approach. Springer (2002)

    Google Scholar 

  8. Cortez, P., Morais, A.: A data mining approach to predict forest fires using meteorological data. In: EPIA 2007, pp. 512–523. APPIA (2007)

    Google Scholar 

  9. Daumé III, H., Marcu, D.: Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research 26, 101–126 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Demšar, D., Debeljak, M., Lavigne, C., Džeroski, S.: Modelling pollen dispersal of genetically modified oilseed rape within the field. In: Annual Meeting of the Ecological Society of America, p. 152 (2005)

    Google Scholar 

  11. Draper, N.R., Smith, H.: Applied regression analysis. Wiley (1982)

    Google Scholar 

  12. Dries, A., Rückert, U.: Adaptive concept drift detection. Statistical Analysis and Data Mining 2(5-6), 311–327 (2009)

    Article  MathSciNet  Google Scholar 

  13. Góra, G., Wojna, A.: RIONA: A Classifier Combining Rule Induction and k-NN Method with Automated Selection of Optimal Neighbourhood. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 111–123. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Hordijk, L.: Spatial correlation in the disturbances of a linear interregional model. Regional and Urban Economics 4, 117–140 (1974)

    Article  Google Scholar 

  15. Huang, Y., Leung, Y.: Analysing regional industrialisation in jiangsu province using geographically weighted regression. Journal of Geographical Systems 4, 233–249 (2002)

    Article  Google Scholar 

  16. Hurvich, C.M., Tsai, C.-L.: Regression and time series model selection in small samples. Biometrika 76(2), 297–307 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelley, P., Barry, R.: Sparse spatial autoregressions. Statistics and Probability Letters 33, 291–297 (1997)

    Article  MATH  Google Scholar 

  18. Legendre, P.: Spatial autocorrelation: Trouble or new paradigm? Ecology 74, 1659–1673 (1993)

    Article  Google Scholar 

  19. LeSage, J., Pace, K.: Spatial dependence in data mining. In: Data Mining for Scientific and Engineering Applications, pp. 439–460. Kluwer Academic (2001)

    Google Scholar 

  20. Levers, C., Brückner, M., Lakes, T.: Social segregation in urban areas: an exploratory data analysis using geographically weighted regression analysis. In: 13th AGILE International Conference on Geographic Information Science 2010 (2010)

    Google Scholar 

  21. Longley, P., Tobon, A.: Spatial dependence and heterogeneity in patterns of hardship: an intra-urban analysis. Annals of the Association of American Geographers 94, 503–519 (2004)

    Article  Google Scholar 

  22. Malerba, D., Ceci, M., Appice, A.: Mining Model Trees from Spatial Data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 169–180. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Mitchell, T.: Machine Learning. McGraw Hill (1997)

    Google Scholar 

  24. Pace, P., Barry, R.: Quick computation of regression with a spatially autoregressive dependent variable. Geographical Analysis 29(3), 232–247 (1997)

    Article  Google Scholar 

  25. Pan, S.J., Shen, D., Yang, Q., Kwok, J.T.: Transferring localization models across space. In: AAAI, pp. 1383–1388. AAAI Press (2008)

    Google Scholar 

  26. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  27. Rinzivillo, S., Turini, F., Bogorny, V., Körner, C., Kuijpers, B., May, M.: Knowledge discovery from geographical data. In: Mobility, Data Mining and Privacy, pp. 243–265. Springer (2008)

    Google Scholar 

  28. Shariff, N., Gairola, S., Talib, A.: Modelling urban land use change using geographically weighted regression and the implications for sustainable environmental planning. In: Proceeding of the 5th International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, iEMSs (2010)

    Google Scholar 

  29. Shekhar, S., Chawla, S.: Spatial databases: A tour. Prentice Hall (2003)

    Google Scholar 

  30. Wang, Y., Witten, I.: Inducing Model Trees for Continuous Classes. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 128–137. Springer, Heidelberg (1997)

    Google Scholar 

  31. Zheng, V.W., Xiang, E.W., Yang, Q., Shen, D.: Transferring localization models over time. In: AAAI, pp. 1421–1426. AAAI Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Appice, A., Ceci, M., Malerba, D., Lanza, A. (2012). Learning and Transferring Geographically Weighted Regression Trees across Time. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds) Modeling and Mining Ubiquitous Social Media. MUSE MSM 2011 2011. Lecture Notes in Computer Science(), vol 7472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33684-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33684-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33683-6

  • Online ISBN: 978-3-642-33684-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics