Skip to main content

Timed Trajectory Generation Combined with an Extended Kalman Filter for a Vision-Based Autonomous Mobile Robot

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

Abstract

Planning collision-free trajectories requires the combination of generation and modulation techniques. This is especially important if temporal stabilization of the generated trajectories is considered. Temporal stabilization means to conform to the planned movement time, in spite of environmental conditions or perturbations. This timing problem has not been addressed in most current robotic systems, and it is critical in several robotic tasks such as sequentially structured actions or human-robot interaction. This work focuses on generating trajectories for a mobile robot, whose goal is to reach a target within a constant time, independently of the world complexity. Trajectories are generated by nonlinear dynamical systems. Herein, we extend our previous work by including an Extended Kalman Filter (EKF) to estimate the target location relative to the robot. A simulated hospital environment and a Pioneer 3-AT robot are used to demonstrate the robustness and reliability of the proposed approach in cluttered, dynamic and uncontrolled scenarios. Multiple experiments confirm that the inclusion of the EKF preserves the timing properties of the overall architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silva, J., Santos, C., Matos, V.: Generating trajectories with temporal constraints for an autonomous robot. In: 8th IEEE International Workshop on Safety, Security & Rescue, Bremen, Germany, July 26-30 (2010)

    Google Scholar 

  2. Silva, J., Santos, C., Matos, V.: Timed trajectory generation for a toy-like wheeled robot. In: 36th Annual Conference of the IEEE Industrial Electronics Society, Glendale, USA, November 07-10, pp. 1645–1650 (2010)

    Google Scholar 

  3. Ijspeert, A., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Advances in Neural Information Processing Systems, vol. 15, pp. 1547–1554. MIT Press (2002)

    Google Scholar 

  4. Santos, C., Matos, V.: Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach. Robot. Auton. Syst. 59, 620–634 (2011)

    Article  Google Scholar 

  5. Buhler, M., Koditscheck, S.: Planning and control of a juggling robot. International Journal of Robotics Research 13(2), 101–118 (1994)

    Article  Google Scholar 

  6. Bizzi, E., Saltiel, P., D’Avella, A., Tresch, M.: Modular organization of spinal motor systems. Neuroscientist 8(5), 437–442 (2002)

    Article  Google Scholar 

  7. Maufroy, C., Kimura, H., Takase, K.: Towards a general neural controller for quadrupedal locomotion. Neural Networks 21(4), 667–681 (2008)

    Article  Google Scholar 

  8. Righetti, L., Buchli, J., Ijspeert, A.J.: Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena 216(2), 269–281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crick, C., Munz, M., Scassellati, B.: Synchronization in social tasks: Robotic drumming. In: Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 97–102 (2006)

    Google Scholar 

  10. Kober, J., Peters, J.: Learning motor primitives for robotics. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe International Conference Center, Kobe, Japan, pp. 2112–2118 (2009)

    Google Scholar 

  11. Hersch, M., Billard, A.G.: Reaching with multi-referential dynamical systems. Autonomous Robots 25, 71–83 (2008)

    Article  Google Scholar 

  12. Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.: Learning motion primitive goals for robust manipulation. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 325–331 (2011)

    Google Scholar 

  13. Clark, M.R., Anderson, G.T., Skinner, R.D.: Coupled oscillator control of autonomous mobile robots. Autonomous Robots 9, 189–198 (2000)

    Article  Google Scholar 

  14. Schöner, G.: A dynamic theory of coordination of discrete movement. Biological Cybernetics 63, 257–270 (1990)

    Article  MathSciNet  Google Scholar 

  15. Santos, C.: Generating timed trajectories for an autonomous vehicle: a non-linear dynamical systems approach. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA (2004)

    Google Scholar 

  16. Tuma, M., Iossifidis, I., Schöner, G.: Temporal stabilization of discrete movement in variable environments: an attractor dynamics approach. In: IEEE International Conference on Robotics and Automation, Kobe International Conference Center, Kobe, Japan, pp. 863–868 (2009)

    Google Scholar 

  17. Degallier, S., Ijspeert, A.: Modeling discrete and rhythmic movements through motor primitives: A review. Biological Cybernetics 103(4), 319–338 (2010)

    Article  Google Scholar 

  18. Schaal, S., Kotosaka, S., Sternad, D.: Nonlinear dynamical systems as movement primitives. In: International Conference on Humanoid Robotics, Cambridge, MA, pp. 117–124 (2001)

    Google Scholar 

  19. Sekmen, A., Barshan, B.: Estimaton of object location and radius of curvature using ultrasonic sonar. IEEE Transactions on Pattern Analysis and Machine Intelligence 62, 841–865 (2001)

    Google Scholar 

  20. Smith, C., Christensen, H.I.: Using cots to construct a high performance robot arm. In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 4056–4063 (2007)

    Google Scholar 

  21. Wimböck, T., Bäuml, B., Hirzinger, G.: Kinematically optimal catching a flying ball with a hand-arm-system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2592–2599 (2010)

    Google Scholar 

  22. Bicho, E., Mallet, P., Schöner, G.: Target representation on an autonomous vehicle with low-level sensors. The International Journal of Robotics Research (210), 424–447 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bruno Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silva, J.B., Santos, C.P., Sequeira, J. (2013). Timed Trajectory Generation Combined with an Extended Kalman Filter for a Vision-Based Autonomous Mobile Robot. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics