Skip to main content

Discovery and Seminal Developments in the CRISPR Field

  • Chapter
  • First Online:
CRISPR-Cas Systems

Abstract

In the late 1980s and early 1990s, arrays of regularly spaced repeats were detected in both bacterial and archaeal genomes. They are currently known as Clustered Regularly Interspaced Short Palindromic Repeats or CRISPR. Advances in our understanding of their biological significance and potential applications for biotechnology have followed a two-phased development. Initial studies were few and mainly descriptive of arrays of interspaced repeats in bacteria and archaea and of physically linked conserved genes that were inferred to be co-functional. Moreover, before their function was revealed, repeat-spacer arrays of Mycobacterium spp were employed as novel markers for bacterial genotyping. The second phase began in 2005, with the discovery of a link between CRISPR arrays and host protection against invading genetic elements. This finding fuelled a plethora of biochemical and genetic studies directed at characterizing the mechanistic details of this novel and complex genetic barrier. First, this led to the finding that the repeats, spacers, CRISPR-associated (Cas) proteins and partially conserved leader regions flanking one end of the CRISPR array, constitute the essential functional components. Subsequently, three primary functional steps were defined: (1) acquisition (also termed adaptation): uptake of new spacers at or near the leader sequence, (2) expression: generation of CRISPR transcripts from within the leader region and their processing into small mature CRISPR RNAs (crRNAs) carrying all or most of the spacer sequence and (3) interference: involving protein-crRNA complexes targeting and cleaving foreign genetic elements. Only now can we begin to comprehend the complex functional interactions and diversity of CRISPR-based systems, and the implications of their adaptive nature. Here, we describe the early developments in the CRISPR field and relate them to our current understanding of how these novel, complex and diverse systems function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agari Y, Sakamoto K, Tamakoshi M, Oshima T, Kuramitsu S, Shinkai A (2009) Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J Mol Biol 395:270–281

    Article  PubMed  CAS  Google Scholar 

  • Aklujkar M, Lovley DR (2010) Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol Biol 10:230

    Article  PubMed  CAS  Google Scholar 

  • Andersson AF, Banfield JF (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–1050

    Article  PubMed  CAS  Google Scholar 

  • Aranaz A, Liebana E, Mateos A, Dominguez L, Vidal D, Domingo M et al (1996) Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. J Clin Microbiol 34:2734–2740

    PubMed  CAS  Google Scholar 

  • Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B et al (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502

    Article  PubMed  CAS  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF (2011) Structure and activity of the Cas3 HD nuclease MJ0384 an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiol 151:2551–2561

    Article  CAS  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG et al (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Cady KC, O’Toole GA (2011) Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J Bacteriol 193:3433–3445

    Article  PubMed  CAS  Google Scholar 

  • Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496

    Article  PubMed  CAS  Google Scholar 

  • Carte J, Pfister NT, Compton MM, Terns RM, Terns MP (2010) Binding and cleavage of CRISPR RNA by Cas6. RNA 16:2181–2188

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Snijders AP, Chakravorty R, Ahmed M, Tarek AM, Hossain MA (2010) Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol 56:878–887

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945

    Article  PubMed  CAS  Google Scholar 

  • Deboy RT, Mongodin EF, Emerson JB, Nelson KE (2006) Chromosome evolution in the thermotogales: large-scale inversions and strain diversification of CRISPR sequences. J Bacteriol 188:2364–2374

    Article  PubMed  CAS  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Kenchappa CS, Peng X, She Q, Garrett RA (2012) Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Res 40:2470–2480

    Article  PubMed  CAS  Google Scholar 

  • Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  PubMed  CAS  Google Scholar 

  • Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM (2010) Diversity of CRISPR loci in Escherichia coli. Microbiol 153:1351–1361

    Google Scholar 

  • Driscoll JR (2009) Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol Biol 551:117–128

    Article  PubMed  CAS  Google Scholar 

  • Erdmann S, Garrett RA (2012) Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Mol Microbiol 85:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Flamand MC, Goblet JP, Duc G, Briquet M, Boutry M (1992) Sequence and transcription analysis of mitochondrial plasmids isolated from cytoplasmic male-sterile lines of Vicia faba. Plant Mol Biol 19:913–923

    Article  PubMed  CAS  Google Scholar 

  • García-Heredia I, Martín-Cuadrado A, Mojica FJM, Santos F, Mira-Obrador A, Antón J, Rodríguez-Valera F (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7:e33802

    Article  PubMed  CAS  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P et al (2010) The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  PubMed  CAS  Google Scholar 

  • Garrett RA, Vestergaard G, Shah SA (2011) Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 19:549–556

    Article  PubMed  CAS  Google Scholar 

  • Gesner EM, Schellenberg MJ, Garside EL, George MM, MacMillan AM (2011) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18:688–692

    Article  PubMed  CAS  Google Scholar 

  • Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62:718–729

    Article  PubMed  CAS  Google Scholar 

  • Greve B, Jensen S, Brügger K, Zillig W, Garrett RA (2004) Genomic comparison of archaeal conjugative plasmids from Sulfolobus. Archaea 1:231–239

    Article  PubMed  CAS  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinf 8:172

    Article  CAS  Google Scholar 

  • Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Gudbergsdottir S, Deng L, Chen Z, Jensen JVK, Jensen LR, She Q, Garrett RA (2011) Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers. Mol Microbiol 79:35–49

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Brügger K, Liu C, Shah SA, Zheng H, Zhu Y et al (2011) Genome analyses of icelandic strains of Sulfolobus islandicus model organisms for genetic and virus-host interaction studies. J Bacteriol 193:1672–1680

    Article  PubMed  CAS  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:474–483

    Article  CAS  Google Scholar 

  • Hale C, Kleppe K, Terns RM, Terns MP (2008) Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    Article  PubMed  CAS  Google Scholar 

  • Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S et al (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:292–302

    Article  PubMed  CAS  Google Scholar 

  • Hao W, Richardson AO, Zheng Y, Palmer JD (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci U S A 107:21576–21581

    Article  PubMed  CAS  Google Scholar 

  • Hatoum-Aslan A, Maniv I, Marraffini LA (2011) Mature clustered regularly interspaced short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci U S A 108:21218–21222

    Article  PubMed  CAS  Google Scholar 

  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Held NL, Herrera A, Quiroz HC, Whitaker RJ (2010) CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE 5:e12988

    Article  PubMed  CAS  Google Scholar 

  • Hermans PW, van Soolingen D, Bik EM, de Haas PE, Dale JW, van Embden JD (1991) Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59:2695–2705

    PubMed  CAS  Google Scholar 

  • Hoe N, Nakashima K, Grigsby D, Pan X, Dou SJ, Naidich S et al (1999) Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 5:254–263

    Article  PubMed  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas the immune system of bacteria and archaea. Science 327:167–170

    Article  PubMed  CAS  Google Scholar 

  • Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S et al (2008) Diversity, activity and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide-sequence of the Iap gene responsible for alkaline-phosphatase isozyme conversion in Escherichia coli and identification of the gene product. J Bacteriol 169:5429–5433

    PubMed  CAS  Google Scholar 

  • Jansen R, Embden JD, Gaastra W, Schouls LM (2002a) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Van Embden JDA, Gaastra W, Schouls LM (2002b) Identification of a novel family of sequence repeats among prokaryotes. OMICS A J Integrat Biol 6:23–33

    Article  CAS  Google Scholar 

  • Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP et al (2011) Structural basis for CRISPR RNA-guided DNA recognition by cascade. Nat Struct Mol Biol 18:529–536

    Article  PubMed  CAS  Google Scholar 

  • Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S et al (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium Pyrococcus horikoshii OT3. DNA Res 5:55–76

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K et al (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon Aeropyrum pernix K1. DNA Res 6:83–101

    Article  PubMed  CAS  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA et al (1997) The complete genome sequence of the hyperthermophilic sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  PubMed  CAS  Google Scholar 

  • Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:R61

    Article  PubMed  CAS  Google Scholar 

  • Lillestøl RK, Redder P, Garrett RA, Brügger K (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72

    Article  PubMed  Google Scholar 

  • Lillestøl RK, Shah SA, Brügger K, Redder P, Phan H, Christiansen J, Garrett RA (2009) CRISPR families of the crenarchaeal genus Sulfolobus:bidirectional transcription and dynamic properties. Mol Microbiol 72:259–272

    Article  PubMed  CAS  Google Scholar 

  • Lintner NG, Frankel KA, Tsutakawa SE, Alsbury DL, Copié V, Young MJ, Tainer JA, Lawrence CM (2011) The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J Mol Biol 405:939–955

    Article  PubMed  CAS  Google Scholar 

  • Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R (2004) Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 101:7046–7051

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery functional analogies with eukaryotic RNAi and hypothetical mechanisms of action. Biol Direct 1:7

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P et al (2011) Evolution and classification of the CRISPR-Cas systems. Nature Rev Microbiol 9:467–477

    Article  CAS  Google Scholar 

  • Manica A, Zebec Z, Teichmann D, Schleper C (2011) In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 80:481–491

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322:1843–1845

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571

    Article  PubMed  CAS  Google Scholar 

  • Masepohl B, Görlitz K, Böhme H (1996) Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC2120. Biochim Biophys Acta 1307:26–30

    Article  PubMed  Google Scholar 

  • Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD et al (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJM, Juez G, Rodríguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9:613–621

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJM, Ferrer C, Juez G, Rodríguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85–93

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol 36:244–246

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiol 155:733–740

    Article  CAS  Google Scholar 

  • Nakata A, Amemura M, Makino K (1989) Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol 171:3553–3556

    PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Brügger M, Shen B, Chen LM, She QX, Garrett A (2003) Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes. J Bacteriol 185:2410–2417

    Article  PubMed  CAS  Google Scholar 

  • Portillo MC, González JM (2009) CRISPR elements in the thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus. J Appl Genet 50:421–430

    Article  PubMed  CAS  Google Scholar 

  • Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, Severinov K (2010) Transcription processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77:1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiol 151:653–663

    Article  CAS  Google Scholar 

  • Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512

    Article  PubMed  CAS  Google Scholar 

  • Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci U S A 98:525–530

    Article  PubMed  CAS  Google Scholar 

  • Rousseau C, Nicolas J, Gonnet M (2009) CRISPI: a CRISPR interactive database. Bioinformatics 25:3317–3318

    Article  PubMed  CAS  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282

    Article  PubMed  CAS  Google Scholar 

  • Sashital DG, Jinek M, Doudna JA (2011) An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol 18:680–687

    Article  PubMed  CAS  Google Scholar 

  • Sashital DG, Wiedenheft B, Doudna JA (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 46:606–615

    Article  PubMed  CAS  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile mosaic genome. Nature Genet 38:779–786

    Article  PubMed  CAS  Google Scholar 

  • Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K (2009) Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296:110–116

    Article  PubMed  CAS  Google Scholar 

  • Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B et al (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108:10098–10103

    Article  PubMed  CAS  Google Scholar 

  • Sensen CW, Charlebois RL, Chow C, Clausen IG, Curtis B, Doolittle WF et al (1998) Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles 2:305–312

    Article  PubMed  CAS  Google Scholar 

  • Shah SA, Garrett RA (2011) CRISPR/Cas and Cmr modules mobility and evolution of adaptive immune systems. Res Microbiol 162:27–38

    Article  PubMed  CAS  Google Scholar 

  • Shah SA, Hansen NR, Garrett RA (2009) Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem Soc Trans 37:23–28

    Article  PubMed  CAS  Google Scholar 

  • She Q, Phan H, Garrett RA, Albers SV, Stedman KM, Zillig W (1998) Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2:417–425

    Article  PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98:7835–7840

    Article  PubMed  CAS  Google Scholar 

  • Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    PubMed  CAS  Google Scholar 

  • Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340

    Article  PubMed  CAS  Google Scholar 

  • Swarts DC, Mosterd C, van Passel MWJ, Brouns SJJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7:e35888

    Article  PubMed  CAS  Google Scholar 

  • Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M et al (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A 99:7536–7541

    Article  PubMed  CAS  Google Scholar 

  • Tang TH, Polacek N, Zywicki M, Huber H, Brügger K, Garrett RA et al (2005) Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55:469–481

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Rocha EP (2010) The small slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS ONE 5:e11126

    Article  PubMed  CAS  Google Scholar 

  • Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10:200–207

    PubMed  CAS  Google Scholar 

  • Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L (2007) Regulation of dev an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J Bacteriol 189:3738–3750

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Preamplume G, Terns MP, Terns RM, Li H (2011) Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19:257–264

    Article  PubMed  CAS  Google Scholar 

  • Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M, Stratmann T et al (2010) H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77:1380–1393

    Article  PubMed  CAS  Google Scholar 

  • Westra ER, van Erp PB, Künne T, Wong SP, Staals RH, Seegers CL et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by cascade and Cas3. Mol Cell 46:595–605

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A et al (2011) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108:10092–10097

    Article  PubMed  CAS  Google Scholar 

  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141

    Article  PubMed  CAS  Google Scholar 

  • Yanai K, Murakami T, Bibb M (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci U S A 103:9661–9666

    Article  PubMed  CAS  Google Scholar 

  • Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576

    Article  PubMed  CAS  Google Scholar 

  • Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O’Toole GA (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 191:210–219

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rouillon C, Kerou M, Reeks J, Brügger K, Graham S et al (2012) Structure and mechanism of the Cmr complex of CRISPR-mediated antiviral immunity. Mol Cell 45:303–313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Shiraz A. Shah is thanked for help with Fig. 1.4 and for constructive discussions. F. J. M. M. is supported by the Spanish Ministerio de Ciencia e Innovación (BIO2011-24417). R. A. G. is supported by the Danish Natural Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. M. Mojica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mojica, F.J.M., Garrett, R.A. (2013). Discovery and Seminal Developments in the CRISPR Field. In: Barrangou, R., van der Oost, J. (eds) CRISPR-Cas Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34657-6_1

Download citation

Publish with us

Policies and ethics