Skip to main content

Zusammenfassung

Die angeborene Immunantwort hat Elemente, die auf allen Köperzellen zu finden sind. Dazu gehören so genannte Mustererkennungsrezeptoren (pattern recognition receptors, PRR). Diese Rezeptoren erkennen Moleküle von Pathoorganismen (pathogen-associated molecular pattern, PAMP) und leiten meist eine Aktivierung der Zelle ein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Angeborene Immunitt

  • Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol 2010; 43(1): 5–16

    Article  PubMed  Google Scholar 

  • Döring G, Gulbins E. Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell Microbiol 2009; 11: 208–16

    Article  PubMed  Google Scholar 

  • Droemann D, Goldmann T, Branscheid D, Clark R, Dalhoff K, Zabel P et al. Toll-like receptor 2 is expressed by alveolar epithelial cells type II and macrophages in the human lung. Histochem Cell Biol 2003; 119(2): 103–108

    PubMed  Google Scholar 

  • Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol 2006; 117(5): 979–987

    Article  PubMed  Google Scholar 

  • Kenny EF, O’Neill LA. Signalling adaptors used by Toll-like receptors: an update. Cytokine 2008; 43(3): 342–349

    Article  PubMed  Google Scholar 

  • Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology 2009; 214(7): 562–575

    Article  PubMed Central  PubMed  Google Scholar 

  • Inohara, Chamaillard, McDonald C, Nunez G. NOD-LRR proteins: role in host microbial interactions and inflammatory disease. Annu Rev Biochem 2005; 74: 355–383

    Google Scholar 

  • Lührmann A, Grote K, Stephan M, Tschernig T, Pabst R. Local pulmonary immune stimulation by the Toll-like receptor 2 and 6 ligand MALP- 2 in rats is age dependent. Immunol Lett. 2007; 108: 167–73

    Article  PubMed  Google Scholar 

  • Maródi L. Innate cellular immune responses in newborns. Clin Immunol 2006; 118: 137–44

    Article  PubMed  Google Scholar 

  • Opitz B, van L, V, Eitel J, Suttorp N. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 2010; 181(12): 1294–1309

    Article  PubMed  Google Scholar 

  • Pabst R, Tschernig T. Bronchus-associated lymphoid tissue: an entry site for antigens for successful mucosal vaccinations? Am J Respir Cell Mol Biol. 2010; 43: 137–41

    Article  PubMed  Google Scholar 

  • Rohmann K, Tschernig T, Pabst R, Goldmann T, Drömann D. Innate immunity in the human lung: pathogen recognition and lung disease. Cell Tissue Res. 2011; 343: 167–74

    Article  PubMed  Google Scholar 

  • Tsai KS, Grayson MH. Pulmonary defense mechanisms against pneumonia and sepsis. Curr Opin Pulm Med. 2008; 14(3): 260–5

    Article  PubMed  Google Scholar 

  • Tschernig T, Pabst R. What is the clinical relevance of different lung compartments? BMC Pulm Med. 2009; 9: 3–9

    Article  Google Scholar 

  • Wilkins C, Gale M, Jr. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 2010; 22(1): 41–47

    Article  PubMed Central  PubMed  Google Scholar 

Surfactant-Abwehr

  • Griese M, Ripper J, Sibbersen A, et al. Long-term follow-up and treatment

    Google Scholar 

  • of congenital alveolar proteinosis. BMC Pediatr. 2011; 11: 7–2

    Google Scholar 

  • Griese M. Surfactanthomöostase - Grundlagen für die Surfactantsubstitutionstherapie. Monatssehr Kinderheilkd 1992; 140: F2–F12

    Google Scholar 

  • Griese M, Dietrich P, Potz C, Westerburg B, Bals R, Reinhardt D. Surfactant subfractions during nosocomial infection in ventilated preterm human neonates. Am J Resp Crit Care Med 1996; 153: 398–403

    Article  PubMed  Google Scholar 

  • Griese M, Steinecker M, Schumacher S, Braun A, Lohse P, Heinrich S. Children with absent surfactant protein D in bronchoalveolar

    Google Scholar 

  • lavage have more frequently pneumonia. Pediatr Allergy Immunol. 2008 19(7): 639-47. Epub 2008 Feb 11.

    Google Scholar 

  • Griese M, Gobran LI, Rooney SA. Surfactant lipid uptake and secretion in type II cells in response to lectins and secretagogues. Am J Physiol. 1991; 261(6 Pt 1): L434–42

    Google Scholar 

  • Kaltenborn E, Kern S, Frixel S, et al. Respiratory syncytial virus potentiates ABCA3 mutation-induced loss of lung epithelial cell differentiation. Hum Mol Genet. 2012, 21: 2793–806

    Article  PubMed  Google Scholar 

  • Ledford JG, Pastva AM, Wright, JR. Collectins link innate and adaptive immunity in allergic airway disease. Innate Immunity 2010; 16(3): 183–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Robertson B, VanGolde LMG, Batenburg JJ. Pulmonary surfactant. From molecular biology to clinical practice. Elsevier, Amsterdam 1992

    Google Scholar 

  • Tafel O, Latzin P, Paul K, Winter T, Woischnik M, Griese M. Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulm Med 2008; 8: 6

    Article  PubMed Central  PubMed  Google Scholar 

Adaptive Abwehr

  • Braun-Fahrlander C et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002; 347(12): 869–77

    Article  PubMed  Google Scholar 

  • Contoli M et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 2006; 12(9): 1023–6

    Article  PubMed  Google Scholar 

  • Holloway JA et al. Detection of house-dust-mite allergen in amniotic fluid and umbilical-cord blood. Lancet 2000; 356(9245): 1900–2

    Article  PubMed  Google Scholar 

  • Huh JC et al. Bidirectional interactions between antigen-bearing respiratory tract dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: DC activation occurs in the airway mucosa but not in the lung parenchyma. J Exp Med 2003; 198(1): 19–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Latzin P et al. Exposure to moderate air pollution during late pregnancy and cord blood cytokine secretion in healthy neonates. PLoS One 2011, 6(8): e2313–0

    Article  Google Scholar 

  • Lauener RP et al. Expression of CD14 and Toll-like receptor 2 in farmers‹ and non-farmers‹ children. Lancet 2002; 360(9331): 465–6

    Article  PubMed  Google Scholar 

  • Nelson DJ et al. Development of the airway intraepithelial dendritic cell network in the rat from class II major histocompatibility

    Google Scholar 

  • (Ia)-negative precursors: differential regulation of Ia expression at different levels of the respiratory tract. J Exp Med 1994; 179(1): 203–12

    Google Scholar 

  • Riedler J et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358(9288): 1129–33

    Article  PubMed  Google Scholar 

  • Schaub B et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 2009; 123(4): 774-82 e–5

    Google Scholar 

  • Schaub B, Lauener R, Prescott SL. Immunology and Defence mechanism of the developing lung. Eur Respir Mon 2006; 37: 60–78

    Google Scholar 

  • Strachan D.P. Hay fever, hygiene, and household size. BMJ 1989; 299(6710): 1259–60

    Article  PubMed  Google Scholar 

  • Tschernig T et al. Dendritic cells in the mucosa of the human trachea are not regularly found in the first year of life. Thorax 2001; 56(6): 427–31

    Article  PubMed  Google Scholar 

Husten und Clearance

  • Hasani A, Pavia D, Agnew JE, Clarke SW. Regional mucus transport following unproductive cough and forced exspiration technique in patients with airways obstruction. Chest 1994; 105: 1420–1425

    Article  PubMed  Google Scholar 

  • King M, Brock G, Lundell C. Clearance of mucus by simulated cough. J Appl Physiol 1985; 58 (6): 1776–1782

    PubMed  Google Scholar 

  • Kreyling W, Scheuch G. Clearance of Particles Deposited in the Lungs (chapter 7). In: Gehr P, Heyder J (eds). Particle-Lung Interactions. In: Lung Biology in Health and Disease 2000, Vol. 143, exec. Ed. C. Lenfant: 323–376

    Google Scholar 

  • Geiser M, Schürch S, Im Hof V, Gehr P. Retention of particles: structural and interfacial aspects. In: Gehr P, Heyder J (eds). Particle-Lung Interactions. In: Lung Biology in Health and Disease 2000, Vol. 143, exec. Ed. C. Lenfant: 291–322

    Google Scholar 

  • Leith RE. Cough. In: Brain JD, Proctor DI, Reid LM (eds) Respiratory defense mechanisms. Dekker, New York 1977: 545–592

    Google Scholar 

  • Macklem PT. Physiology of cough. Ann Otol 1974; 83X: 761–768

    Google Scholar 

  • Oldenburg FA jr., Dolovich MB, Montgomery JM, Newhouse MT. Effects of postdural drainage, exercise, and cough on mucus clearance in chronic bronchitis. Am Rev Respir 1979; Dis 120: 739–745

    Google Scholar 

  • Robinson M, Regnis JA, Bailey DA, King M, Bautovich GJ, Beye PT. Effect of hypertonic saline, amiloride and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 1996; 153: 1503–1509

    Article  PubMed  Google Scholar 

  • Salathe M, O’Riordan TG, Wanner A. Treatment of mucociliary dysfunction. Chest 1996; 110: 1048–1057

    Article  PubMed  Google Scholar 

  • Wanner A, Phipps RJ, Kim CS. Mucus clearance: Cilia and cough. In: Chernick V, Mellins RB (eds) Basic mechanisms of pediatric respiratory disease: Cellular and integrative. Dekker, Philadelphia 1991: 361–382

    Google Scholar 

  • Wildhaber J und Kamin W. Inhalationstherapie im Kindes- und Jugendalter, 2. Aufl. Unimed-Verlag, Bremen 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drömann, D., Renz, H., Tschernig, T., Griese, M., Schaub, B., Wildhaber, J. (2013). Abwehr. In: von Mutius, E., Gappa, M., Eber, E., Frey, U. (eds) Pädiatrische Pneumologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34827-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34827-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34826-6

  • Online ISBN: 978-3-642-34827-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics