Skip to main content

An Abstract Deep Network for Image Classification

  • Conference paper
AI 2012: Advances in Artificial Intelligence (AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Included in the following conference series:

Abstract

In order to allow more flexible and general learning, it is an advantage for artificial systems to be able to discover re-usable features that capture structure in the environment, known as Deep Learning. Techniques have been shown based on convolutional neural networks and stacked Restricted Boltzmann Machines, which are related to some degree with neural processes. An alternative approach using abstract representations, the ARCS Learning Classifier System, has been shown to build feature hierarchies based on reinforcement, providing a different perspective, however with limited classification performance compared to Artificial Neural Network systems. An Abstract Deep Network is presented that is based on ARCS for building the feature network, and introduces gradient descent to allow improved results on an image classification task. A number of implementations are examined, comparing the use of back-propagation at various depths of the system. The ADN system is able to produce classification error of 1.18% on the MNIST dataset, comparable with the most established general learning systems on this task. The system shows strong reliability in constructing features, and the abstract representation provides a good platform for studying further effects such as as top-down influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep learning: A review and new perspectives. CoRR abs/1206.5538 (2012)

    Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  3. Rousselet, G.A., Thorpe, S.J., Fabre-Thorpe, M.: How parallel is visual processing in the ventral pathway? Trends in Cognitive Sciences 8(8), 363–370 (2004)

    Article  Google Scholar 

  4. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative theory of immediate visual recognition. In: Paul Cisek, T.D., Kalaska, J.F. (eds.) Computational Neuroscience: Theoretical Insights into Brain Function. Progress in Brain Research, vol. 165, pp. 33–56. Elsevier (2007)

    Google Scholar 

  5. Weng, J.: A 5-chunk developmental brain-mind network model for multiple events in complex backgrounds. In: IJCNN, pp. 1–8 (July 2010)

    Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Fischer, A., Igel, C.: Empirical Analysis of the Divergence of Gibbs Sampling Based Learning Algorithms for Restricted Boltzmann Machines. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 208–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Tempered Markov Chain Monte Carlo for training of restricted Boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, May 13-15, pp. 145–152 (2010)

    Google Scholar 

  10. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduction, review, and roadmap. J. Artif. Evol. App. 2009, 1:1–1:25 (2009)

    Article  Google Scholar 

  11. Knittel, A.: An activation reinforcement based classifier system for balancing generalisation and specialisation (ARCS). In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1871–1878. ACM, New York (2010)

    Chapter  Google Scholar 

  12. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  13. Knittel, A.: Learning feature hierarchies under reinforcement. In: IEEE Congress on Evolutionary Computation (CEC). IEEE (2012)

    Google Scholar 

  14. Ebadi, T., Zhang, M., Browne, W.: XCS-based versus UCS-based feature pattern classification system. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 839–846. ACM, New York (2012)

    Google Scholar 

  15. Haykin, S.: Neural networks and learning machines. Prentice Hall (2009)

    Google Scholar 

  16. Bar, M.: A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cognitive Neuroscience 15(4), 600–609 (2003)

    Article  MathSciNet  Google Scholar 

  17. Bar, M.: Visual objects in context. Nature Reviews Neuroscience 5(8), 617–629 (2004)

    Article  MathSciNet  Google Scholar 

  18. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Ranzato, M., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: CVPR 2007, pp. 1–8 (June 2007)

    Google Scholar 

  21. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML, pp. 609–616. ACM, New York (2009)

    Google Scholar 

  22. Grauman, K., Leibe, B.: Visual Object Recognition. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Knittel, A., Blair, A.D. (2012). An Abstract Deep Network for Image Classification. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics