Skip to main content

The Psychology and Psychobiology of Simple Decisions: Speeded Choice and Its Neural Correlates

  • Chapter
  • First Online:
Neuroeconomics

Abstract

In this chapter, we provide a tutorial review of the class of sequential sampling models of two-choice decision-making. These models, which have been developed in cognitive and mathematical psychology over the last 50 years, provide a detailed quantitative account of performance in simple, speeded choice tasks. The models explain the major findings from a wide variety of behavioral decision tasks, including the relationship between choice probabilities and response time (RT), the speed-accuracy tradeoff, the shapes of RT distributions, and the relative speed of correct and error responses. More recently, electrophysiological recordings from decision-related brain areas in awake behaving monkeys have revealed a correspondence between patterns of neural firing and the statistical processes of evidence accumulation assumed in the psychological models. We discuss the theoretical relationship between the cognitive process of evidence accumulation and neural firing rates and show how neural data can constrain behavioral models. Importantly, constraints from neurophysiological data can be used to test between models that are otherwise difficult to distinguish. The convergence of psychological theory and neurophysiological data suggests that a common theoretical and mathematical framework is sufficient to account for simple decision-making data at neural and behavioral levels of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audley RJ, Pike AR (1965) Some alternative stochastic models of choice. Br J Math Stat Psychol 18:207–225

    Article  Google Scholar 

  • Bennur S, Gold JI (2011) Distinct representations of a perceptual decision and the associated oculomotor plan in the monkey lateral intraparietal area. J Neurosci 31:913–921

    Article  PubMed  PubMed Central  Google Scholar 

  • Bode S, Sewell DK, Lilburn SD, Forte JD, Smith PL, Stahl J (2012) Predicting perceptual decision biases from early brain activity. J Neurosci 32:12488–12498

    Article  PubMed  Google Scholar 

  • Bogacz R (2007) Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn Sci 11:118–125

    Article  PubMed  Google Scholar 

  • Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113:700–765

    Article  PubMed  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses of neurons in macaque MT to stochastic motion signals. Vis Neurosci 10:1157–1169

    Article  PubMed  Google Scholar 

  • Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship between behavioral choice and the visual response of neurons in macaque MT. Vis Neurosci 13:87–100

    Article  PubMed  Google Scholar 

  • Brown SD, Heathcote A (2008) The simplest complete model of choice response time: Linear ballistic accumulation. Cogn Psychol 57:153–178

    Article  PubMed  Google Scholar 

  • Busemeyer JR, Townsend JT (1993) Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol Rev 100:432–459

    Article  PubMed  Google Scholar 

  • Churchland AK, Kiani R, Shadlen MN (2008) Decision-making with multiple alternatives. Nat Neurosci 11:693–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Ditterich J (2006) Evidence for time-variant decision making. Eur J Neurosci 24:3628–3641

    Article  PubMed  Google Scholar 

  • Ditterich J, Mazurek ME, Shadlen MN (2003) Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci 6:891–898

    Article  PubMed  Google Scholar 

  • Edwards W (1965) Optimal strategies for seeking information: models for statistics, choice reaction times, and human information processing. J Math Psychol 2:312–329

    Article  Google Scholar 

  • Forstmann BU, Brown S, Dutilh G, Neumann J, Wagenmakers EJ (2010) The neural substrate of prior information in perceptual decision making: a model-based analysis. Frontiers in Human Neuroscience 4:1–12

    Article  Google Scholar 

  • Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70:216–220

    PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2000) Representation of a perceptual decision in developing oculomotor commands. Nature 404:390–394

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences 5:10–16

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36:299–308

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2003) The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J Neurosci 23:632–651

    PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574

    Article  PubMed  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Green DM, Smith AF, von Gierke SM (1983) Choice reaction time with a random foreperiod. Percept Psychophys 34:195–208

    Article  PubMed  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274:427–430

    Article  PubMed  Google Scholar 

  • Hanks TD, Ditterich J, Shadlen MN (2006) Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci 9:682–689

    Article  PubMed  PubMed Central  Google Scholar 

  • Huk AC, Meister MLR (2012) Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making. Front Integr Neurosci 6:1–13

    Article  Google Scholar 

  • Huk AC, Shadlen MN (2005) Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J Neurosci 25:10420–10436

    Article  PubMed  Google Scholar 

  • Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J Neurosci 28:3017–3029

    Article  PubMed  Google Scholar 

  • LaBerge D (1962) A recruitment theory of simple behavior. Psychometrika 27:375–396

    Article  Google Scholar 

  • LaBerge D (1994) Quantitative models of attention and response processing in shape identification tasks. J Math Psychol 38:198–243

    Article  Google Scholar 

  • Laming DRJ (1968) Information theory of choice reaction time. Wiley, New York

    Google Scholar 

  • Link SW, Heath RA (1975) A sequential theory of psychological discrimination. Psychometrika 40:77–105

    Article  Google Scholar 

  • Lo C-C, Wang X-J (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci 9:956–963

    Article  PubMed  Google Scholar 

  • Luce RD (1986) Response times: Their role in inferring elementary mental organization. Oxford University Press, Oxford

    Google Scholar 

  • Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators in perceptual decision making. Cereb Cortex 13:1257–1269

    Article  PubMed  Google Scholar 

  • Mulder MJ, Wagenmakers EJ, Ratcliff R, Boekel W, Forstmann BU (2012) Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J Neurosci 32:2335–2343

    Article  PubMed  Google Scholar 

  • Palmer J, Huk AC, Shadlen MN (2005) The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision 5:376–404

    Article  PubMed  Google Scholar 

  • Pike AR (1966) Stochastic models of choice behaviour: response probabilities and latencies of finite Markov chain systems. Br J Math Stat Psychol 21:161–182

    Article  Google Scholar 

  • Pike AR (1973) Response latency models for signal detection. Psychol Rev 80:53–68

    Article  PubMed  Google Scholar 

  • Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ (2010) Neurally constrained modeling of perceptual decision making. Psychol Rev 117:1113–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell BA, Schall JD, Logan GD, Palmeri TJ (2012) From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search. J Neurosci 32:3433–3446

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao V, DeAngelis GC, Snyder LH (2012) Neural correlates of prior expectations of motion in the lateral intraparietal and middle temporal areas. J Neurosci 32:10063–10074

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59–108

    Article  Google Scholar 

  • Ratcliff R (1988) Continuous versus discrete information processing: modeling accumulation of partial information. Psychol Rev 95:238–255

    Article  PubMed  Google Scholar 

  • Ratcliff R (2002) A diffusion model account of response time and accuracy in a brightness discrimination task: fitting real data and failing to fit fake but plausible data. Psychon Bull Rev 9:278–291

    Article  PubMed  Google Scholar 

  • Ratcliff R (2006) Modeling response signal and response time data. Cogn Psychol 53:195–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 20:873–922

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347–356

    Article  Google Scholar 

  • Ratcliff R, Rouder JN (2000) A diffusion model account of masking in two-choice letter identification. J Exp Psychol Hum Percept Perform 26:127–140

    Article  PubMed  Google Scholar 

  • Ratcliff R, Smith PL (2004) A comparison of sequential sampling models for two-choice reaction time. Psychol Rev 111:333–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff R, Smith PL (2010) Perceptual discrimination in static and dynamic noise: the temporal relation between perceptual encoding and decision making. J Exp Psychol Gen 139:70–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff R, Van Zandt T, McKoon G (1999) Connectionist and diffusion models of reaction time. Psychol Rev 106:261–300

    Article  PubMed  Google Scholar 

  • Ratcliff R, Cherian A, Segraves MA (2003) A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J Neurophysiol 90:1392–1407

    Article  PubMed  Google Scholar 

  • Ratcliff R, Gomez P, McKoon G (2004) A diffusion model account of the lexical decision task. Psychol Rev 111:159–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliff R, Hasegawa YT, Hasegawa RP, Smith PL, Segraves MA (2007) Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J Neurophysiol 97:1756–1774

    Article  PubMed  Google Scholar 

  • Ratcliff R, Hasegawa YT, Hasegawa RP, Childers R, Smith PL, Segraves MA (2011) Inhibition in superior colliculus neurons in a brightness discrimination task? Neural Comput 23:1790–1820

    Google Scholar 

  • Roe RM, Busemeyer JR, Townsend JT (2001) Multialternative decision field theory: a dynamic connectionist model of decision making. Psychol Rev 108:370–392

    Article  PubMed  Google Scholar 

  • Roitman JD, Shadlen MN (2002) Response of neurons in the later intraparietal area during a combined visual discrimination reaction time task. J Neurosci 22:9475–9489

    PubMed  Google Scholar 

  • Rorie AE, Gao J, McClelland JL, Newsome WT (2010) Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS ONE 5:1–21

    Article  Google Scholar 

  • Schall JD (2004) On building a bridge between brain and behavior. Annu Rev Psychol 55:23–50

    Article  PubMed  Google Scholar 

  • Seidemann E, Zohary E, Newsome WT (1998) Temporal gating of neural signals during performance of a visual discrimination task. Nature 394:72–75

    Article  PubMed  Google Scholar 

  • Sewell DK, Smith PL (2012) Attentional control in visual signal detection: effects of abrupt-onset and no-onset stimuli. J Exp Psychol Hum Percept Perform 38:1043–1068

    Article  PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding. Proc Nat Acad Sci 93:628–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1936

    PubMed  Google Scholar 

  • Smith PL (1995) Psychophysically principled models of visual simple reaction time. Psychol Rev 102:567–593

    Article  Google Scholar 

  • Smith PL (2000) Stochastic dynamic models of response time and accuracy: a foundational primer. J Math Psychol 44:408–463

    Article  PubMed  Google Scholar 

  • Smith PL (2010) From poisson shot noise to the integrated Ornstein-Uhlenbeck process: neurally principled models of information accumulation in decision-making and response time. J Math Psychol 54:266–283

    Article  Google Scholar 

  • Smith PL, McKenzie CRL (2011) Diffusive information accumulation by minimal recurrent neural models of decision-making. Neural Comput 23:2000–2031

    Article  PubMed  Google Scholar 

  • Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends Neurosci 27:161–168

    Article  PubMed  Google Scholar 

  • Smith PL, Ratcliff R (2009) An integrated theory of attention and decision making in visual signal detection. Psychol Rev 116:283–317

    Article  PubMed  Google Scholar 

  • Smith PL, Van Zandt T (2000) Time-dependent poisson counter models of response latency in simple judgment. Br J Math Stat Psychol 53:293–315

    Article  PubMed  Google Scholar 

  • Smith PL, Vickers D (1988) The accumulator model of two-choice discrimination. J Math Psychol 32:135–168

    Article  Google Scholar 

  • Smith PL, Ratcliff R, Wolfgang BJ (2004) Attention orienting and the timecourse of perceptual decisions: response time distributions with masked and unmasked displays. Vision Res 44:1297–1320

    Article  PubMed  Google Scholar 

  • Smith PL, Ellis R, Sewell DK, Wolfgang BJ (2010) Cued detection with compound integration-interruption masks reveals multiple attentional mechanisms. J Vis 10:1–28  

    Article  Google Scholar 

  • Stone M (1960) Models for choice-reaction time. Psychometrika 25:251–260

    Google Scholar 

  • Teller DY (1984) Linking propositions. Vision Res 10:1233–1246

    Article  Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    PubMed  Google Scholar 

  • Thompson KG, Bichot NP, Schall JD (1997) Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophysiol 77:1046–1050

    PubMed  Google Scholar 

  • Thornton TL, Gilden DL (2007) Parallel and serial processes in visual search. Psychol Rev 114:71–103

    Article  PubMed  Google Scholar 

  • Townsend JT, Ashby FG (1983) Stochastic modeling of elementary psychological processes. Cambridge University Press, Cambridge

    Google Scholar 

  • Usher M, McClelland JL (2001) The time course of perceptual choice: the leaky, competing accumulator model. Psychol Rev 108:550–592

    Article  PubMed  Google Scholar 

  • Van Zandt T, Colonius H, Proctor RW (2000) A comparison of two response time models applied to perceptual matching. Psychon Bull Rev 7:208–256

    Article  PubMed  Google Scholar 

  • Vickers D (1970) Evidence for an accumulator model of psychophysical discrimination. Ergonomics 13:37–58

    Article  PubMed  Google Scholar 

  • Vickers D (1979) Decision processes in visual perception. Academic Press, New York

    Google Scholar 

  • Wagenmakers EJ, Brown S (2007) On the linear relation between the mean and the standard deviation of a response time distribution. Psychol Rev 114:830–841

    Article  PubMed  Google Scholar 

  • Wald A (1947) Sequential analysis. Wiley, New York

    Google Scholar 

  • Wang X-J (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455–463

    Article  PubMed  Google Scholar 

  • Wang X-J (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968

    Article  PubMed  Google Scholar 

  • Wickelgren WA (1977) Speed-accuracy tradeoff and information processing dynamics. Acta Psychol 41:67–85

    Article  Google Scholar 

  • Wong K-F, Wang X-J (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26:1314–1328

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ARC Discovery Grant DP110103406 awarded to P.L. Smith and R. Ratcliff. We thank Simon Lilburn for helpful comments on a previous version of the manuscript. David Sewell is now at the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip L. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sewell, D.K., Smith, P.L. (2016). The Psychology and Psychobiology of Simple Decisions: Speeded Choice and Its Neural Correlates. In: Reuter, M., Montag, C. (eds) Neuroeconomics. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35923-1_14

Download citation

Publish with us

Policies and ethics