Skip to main content

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 2))

  • 1504 Accesses

Abstract

Timber is a multidimensional perceptional space and therefore much more difficult to understand compared to pitch perception (Licklider 1951). When subjects are asked to decide about similarities of sounds where pitch and timbre are altered, clearly the pitch change dominates the timbre change. So a hierarchy exists between these two. Still they are related in some way, and so to understand timbre perception it is appropriate to discuss pitch first.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, R.: Efficient Auditory Coding of a Xylophone Bar. In: Schneider, A. (ed.) Concepts, Methods, Findings: Studies in Systematic Musicology. Hamburger Jahrbuch für Musikwissenschaft, vol. 24, pp. 197–212. Peter Lang Verlag, Hamburg (2008)

    Google Scholar 

  2. Backhaus, H.: Über die Bedeutung der Ausgleichsvorgänge in der Akustik [About the role of balance processes in acoustics]. Zeitschrift für Technische Physik 13, 31–46 (1932)

    Google Scholar 

  3. Bartley, S.H.: Principles of perception. Harper, New York (1958)

    Google Scholar 

  4. Bergmann, P., Sköld, A., Västfjäll, D.: Perceptual and emotional categorization of sound. J. Acoust. Soc. Am. 126(6), 3156–3167 (2009)

    Article  Google Scholar 

  5. Beauchamp, J.W. (ed.): Analysis, Synthesis, and Perception of Musical Sounds. Springer, New York (2007)

    MATH  Google Scholar 

  6. von Bismarck, G.: Sharpness as an attribute of the timbre of steady sounds. Acustica 30, 159–172 (1974)

    Google Scholar 

  7. Borg, I., Groenen, P.: Modern Multidimensional Scaling: theory and applications, 2nd edn. Springer (2005)

    Google Scholar 

  8. Burred, J.J.: New Methods for Musical Source Separation. PhD, Berlin (2009)

    Google Scholar 

  9. Caclin, A., Smith, B.K., Giard, M.-H.: Interactive processing of timbre space dimensions: An exploration with event-related potentials. J. of Cognitive Neuroscience 20, 49–64 (2008)

    Article  Google Scholar 

  10. Caclin, A., Brattico, E., Tervaniemi, M., Näänen, R., Morlet, D., Giard, M.-H., et al.: Separate neural processing of timbre dimensions in auditory sensory memory. J. of Cognitive Neuroscience 18, 1959–1972 (2006)

    Article  Google Scholar 

  11. Caclin, A., McAdams, S., Smith, B.K., Winsberg, S.: Acoustic correlates of timbre space dimensions: A confimatory study using synthetic tones. J. Acoust. Soc. Am. 118, 471–482 (2005)

    Article  Google Scholar 

  12. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychometrica 35, 283–319 (1970)

    Article  MATH  Google Scholar 

  13. Corter, J.E., Tversky, A.: Extended similarity trees. Psychometrika 51, 429–451 (1986)

    Article  MATH  Google Scholar 

  14. Cosi, P., De Poli, G., Lauzzana, G.: Auditory modelling and self-organizing neural networks for timbre classification. J. New Music Research 23, 71–98 (1994)

    Article  Google Scholar 

  15. Dau, T., Püschel, D., Kohlrausch, A.: A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J. Acoust. Soc. Am. 99(6), 3615–3622 (1996)

    Article  Google Scholar 

  16. Dau, T., Püschel, D., Kohlrausch, A.: A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements. J. Acoust. Soc. Am. 99(6), 3623–3631 (1996)

    Article  Google Scholar 

  17. de Boer, E., de Jongh, H.R.: On cochlear encoding: Potentialities and limitations of the reverse-correlation technique. J. Acoust. Soc. Am. 63(1), 115–135 (1978)

    Article  Google Scholar 

  18. De Bruijn, A.: Timbre-Classification of Complex Tones. Acustica 40, 108–114 (1978)

    Google Scholar 

  19. Dünnwald, H.: Die Qualitätsbestimmung von Violinen mit Hilfe eines objektiven Verfahrens [Determining the quality of violins using an objective method]. PhD RWTH Aachen (1983)

    Google Scholar 

  20. Drennan, W.R., Watson, C.S.: Sources of variation in profile analysis. II. Component spacing, dynamic changes, and roving level. J. Acoust. Soc. Am. 110(5), 2498–2504 (2001)

    Article  Google Scholar 

  21. Durlach, N.I., Braida, L.D., Ito, Y.: Towards a model for discrimination of broadband signals. J. Acoust. Soc. Am. 80(1), 63–72 (1986)

    Article  Google Scholar 

  22. Eagleson, H.V., Eagleson, O.W.: Identification of Musical Instruments when heard directly and over a public-address system. J. Acoust. Soc. Am. 19, 338–342 (1947)

    Article  Google Scholar 

  23. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer (2010)

    Google Scholar 

  24. Emirog̃lu, S.S.: Timbre perception and object separation with normal and impaired hearing. PhD, Oldenburg (2007)

    Google Scholar 

  25. Fastl, H., Zwicker, E.: Psychoacoustics. Facts and Models, 3rd edn. Springer (2007)

    Google Scholar 

  26. Feiten, B., Günzel, S.: Automatic Indexing of a Sound Database Using Self-organizing Neural Nets. Computer Music Journal 18(3), 53–65 (1994)

    Article  Google Scholar 

  27. Fitzgerald, R.: Performer-dependent dimensions of timbre: identifying acoustic cues for oboe tone discimination. PhD, University of Leeds (2003)

    Google Scholar 

  28. Frege, G.: Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl [Foundations of Arithmetics. A logical mathematical investigation about the notion of number]. Verlag von Wilhelm Koebner, Breslau (1884)

    Google Scholar 

  29. Friston, K.: Is the free-energy principle neurocentric? Nature Neuroscience 11, 605–606 (2010)

    Google Scholar 

  30. Friston, K.: The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 11, 127–138 (2010)

    Article  Google Scholar 

  31. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behaviour: a free-energy formulation. Biological Cybernetics 102, 227–260 (2010)

    Article  Google Scholar 

  32. Garner, W.R.: The processing of information and structure. Wiley & Sons (1974)

    Google Scholar 

  33. Goldstein, J.L.: An Optimum Processor Theory for the Central Formation of the Pitch of Compex Tones. J. Acoust. Soc. Am. 54, 1496–1516 (1973)

    Article  Google Scholar 

  34. Green, D.M.: Profile Analysis: Auditory Intensity Discrimination. Oxford University Press, New York (1988)

    Google Scholar 

  35. Grey, J.M., Moorer, J.A.: Perceptual evaluations of synthesized musical instrument tones. J. Acoust. Soc. Am. 62(2), 454–462 (1977)

    Article  Google Scholar 

  36. Grey, J.M.: Timbre discrimination in musical patterns. J. Acoust. Soc. Am. 64(2), 467–472 (1978)

    Article  Google Scholar 

  37. Grey, J.M.: Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am. 61(5), 1270–1277 (1977)

    Article  Google Scholar 

  38. Grey, J.M.: An exploration of musical timbre. Ph.D. thesis. Stanford Department of Music Report No. STAN-M-2 (1975)

    Google Scholar 

  39. Grieser Painter, J.G.: Music, meansing, and a semantic space for musical sounds. MPI Series in human cognitive and brain sciences, Dresden, vol. 107 (2008)

    Google Scholar 

  40. Haykin, S.: Neural Networks and Learning machines, 3rd edn. Pearson International Edition (2009)

    Google Scholar 

  41. Heerra, P., Peeteres, G., Dubnow, S.: Automatic classification of musical instrument sounds. J. of New Music Research 32, 3–21 (2003)

    Article  Google Scholar 

  42. Hoenig, K., Müller, C., Herrnberger, B., Sim, E.-J., Spitzer, M., Ehret, G., Kiefer, M.: Neuroplasticity of semantic representations for musical instruments in professional musicians. NeuroImage 56, 1714–1725 (2011)

    Article  Google Scholar 

  43. Horner, A.B., Beauchamp, J.W., So, R.H.Y.: Detection of time-varying harmonic amplitude alterations due to spectral interpolations between musical instrument tones. J. Acoust. Soc. Am. 125(1), 492–502 (2009)

    Article  Google Scholar 

  44. Hourdin, C., Charbonneau, G., Moussa, T.: A multidimensional Scaling Analysis of Musical Instruments’ Time-Varying Spectra. Computer Music Journal 21(2), 40–55 (1997)

    Article  Google Scholar 

  45. Iverson, P., Krumhansl, C.L.: Isolating the dynamic attribbutes of musical timbre. J. Acoustic. Soc. Am. 94, 2595–2603 (1993)

    Article  Google Scholar 

  46. Knees, P., Schedl, M., Pohle, T., Widmer, G.: Exporing Music Collections in Virtual Landscapes. IEEE MultiMedia 14(3), 46–54 (2007)

    Article  Google Scholar 

  47. Kohonen, T.: Self-organizing maps, 3rd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  48. Kostek, B.: Perception-based data processing in acoustics. Applications to Music Information Retrieval and Psychophysiology of Hearing. Springer (2005)

    Google Scholar 

  49. Krumhansl, C.L.: Why is Musical Timbre so hard to understand? In: Nielzén, S., Olsson, O. (eds.) Structure and Perception of Electroacoustic Sound and Music, Amsterdam, pp. 43–53 (1989)

    Google Scholar 

  50. Lakatos, S.: A common perceptual space for harmonic and percussive timbres. Perception & Psychophysics 62, 1426–1439 (2000)

    Article  Google Scholar 

  51. Lakatos, S., McAdams, S., Chaussé, R.: The representation of auditory source characteristics: Simple geometric form. Perception & Psychophysics 59(8), 1180–1190 (1997)

    Article  Google Scholar 

  52. Groux, S., Verschure, F.M.J.: Emotional Responses to the Perceptual Dimensions of Timbre: A Pilot Study Using Physically Informed Sound Synthesis. In: Proceedings of the 7th International Symposium on Computer Music Modeling and Retrieval, CMMR 2010, pp. 235–249 (2010)

    Google Scholar 

  53. Lentz, J.J.: Profile analysis: The effects of rove on sparse spectra. J. Acoust. Soc. Am. 118(5), 2794–2797 (2005)

    Article  Google Scholar 

  54. Lewicki, M.S.: Efficient coding of natural sounds. Nature Neuroscience 5(4), 356–363 (2002)

    Article  Google Scholar 

  55. Licklider, J.C.R.: Basic correlates of the auditory stimulus. In: Stevens, S.S. (ed.) Handbook of Experimental Psychology. Wiley, New York (1951)

    Google Scholar 

  56. Lopez-Poveda, E.A., Meddis, R.: A human nonlinear cochlear filterbank. J. Acoust. Soc. Am. 110(6), 3107–3118 (2001)

    Article  Google Scholar 

  57. Luce, D., Clark, M.: Durations of attack transients of nonpercussive orchestral instruments. J. Audio Engineering Society 13, 194–199 (1965)

    Google Scholar 

  58. Lutfi, R.A., Liu, C.-J., Stoelinga, C.N.J.: Auditory discrimination of force of impact. J. Acost. Soc. Am. 129(4), 2104–2111 (2011)

    Article  Google Scholar 

  59. Lutfi, R.A., Stoelinga, C.N.J.: Sensory constraints on auditory identification of the material and geometry properties of struck bars. J. Acoust. Soc. Am. 127(1), 350–360 (2010)

    Article  Google Scholar 

  60. Lutfi, R.A.: Auditory detection of hollowness. J. Acoust. Soc. Am. 110, 1010–1019 (2001)

    Article  Google Scholar 

  61. McAdams, S., Chaigne, A., Roussarie, V.: The psychomechanics of simulated sound sources: material properties of impacted bars. J. Acoust. Soc. Am. 115(3), 1306–1320 (2004)

    Article  Google Scholar 

  62. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: Common dimensions, specifities, and latent subject classes. Psychological Review 58, 177–192 (1995)

    Google Scholar 

  63. Meinel, H.F.: Regarding the sound quality of violins and a scientific basis for violin construction. J. Acoust. Soc. Am. 29(7), 817–822 (1957)

    Article  Google Scholar 

  64. Menon, V., Levitin, D., Smith, B., Lembke, A., Krasnow, B., Glazer, D., Glover, G.H., McAdams, S.: Neural correlates of timbre change in harmonic sounds. NeuroImage 17, 1742–1754 (2002)

    Article  Google Scholar 

  65. Meyer, M., Baumann, S., Jancke, L.: Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage 32, 1510–1523 (2006)

    Article  Google Scholar 

  66. Meyer, J.: Verbesserung der Klangqualität von Gitarren aufgrund systematischer Untersuchungen ihres Schwingungsverhaltens [Improvement of the sound quality of guitars by systematic investigations of its vibrating behaviour]. Physikalisch-Technische Bundesanstalt Braunschweig, Forschungsvorhaben Nr. 4490 (1980)

    Google Scholar 

  67. Miller, J.R., Carterette, E.C.: Perceptual space for musical structures. J. Acoust. Soc. Am. 58(3), 711–720 (1975)

    Article  Google Scholar 

  68. Mores, R.: Vowel quality in violin sounds. In: Bader, R., Neuhaus, C., Morgenstern, U. (eds.) Concepts, Experiments, and Fieldwork: Studies in Systematic Musicology and Ethnomusicology, Peter Lang, Frankfurt a.M., pp. 113–136 (2009)

    Google Scholar 

  69. Neuhoff, J.G.: Ecological Psychoacoustics. Elsevier (2004)

    Google Scholar 

  70. Pantev, C., Roberts, L.E., Schulz, M., Engelien, A., Ross, B.: Timbre-specific enhancement of auditory cortical representations in musicians. Neuro Report 12(1), 169–174 (2001)

    Google Scholar 

  71. Patterson, R.D., Unoki, M., Irino, T.: Extending the domain of center frequencies for the compressive gammachirp auditory filter. J. Acoust. Soc. Am. 114(3), 1529–1542 (2003)

    Article  Google Scholar 

  72. Patterson, R.D., Holdsworth, J., Nimmo-Smith, I., Rice, P.: The auditory filter bank. MRC-APU Report 2341, Cambridge (1991)

    Google Scholar 

  73. Pitt, M.A., Crowder, R.G.: The Role of Spectral and Dynamic Cues in Imagery for Musical Timbre. J. of Experimental Psychology: Human Pereption and Performance 18(3), 728–738 (1992)

    Article  Google Scholar 

  74. Qian, J., Richards, V.M.: The effect of onset asynchrony on relative weights in profile analysis. J. Acoust. Soc. Am. 127(4), 2461–2465 (2010)

    Article  Google Scholar 

  75. Rao, R.P.N., Olshausen, B.A., Lewicki, M.S.: Probabilistic Models of the Brain. Perception and Neural Function. MIT Press (2002)

    Google Scholar 

  76. Reinecke, H.-P.: Über den doppelten Sinn des Lautheitsbegriffs beim musikalischen Hören [About the double meaning of loudness in musical hearing]. Diss. Hamburg (1953)

    Google Scholar 

  77. Reuter, C.: Der Einschwingvorgan nichtperkussiver Musikinstrumente [The Initial Transient of non-percussive Musical Instruments]. Peter Lang Verlag (1995)

    Google Scholar 

  78. Rimsky-Korsakov, N.: Principles of Orchestration. Dover, New York (1964)

    Google Scholar 

  79. Rioux, V.: Methods for an objective and subjective description of starting transients for some flue organ pipes: Integrating the view of an organ-builder. Acta Acustica United with Acustica 86(4), 634–641 (2000)

    Google Scholar 

  80. Roh, S.K.: Acoustical Analysis of Violin Timbre on Differently Skilled Players. In: Yi, S.W. (ed.) Music, Mind, and Science, pp. 506–521. Seoul National University Press (1999)

    Google Scholar 

  81. Rose, J.E., Brugge, J.F., Anderson, D.J., Hind, J.E.: Phase-locked response to low-frequency tones in signal auditory nerve fibres of the squirrel monkey. J. of Neurophysiology 30, 769–793 (1967)

    Google Scholar 

  82. Saunders, F.A.: Analysis of the tones of a few wind instruments. J. Acoust. Soc. Am. 18(2), 395–401 (1946)

    Article  Google Scholar 

  83. Schneider, A., von Ruschkowski, A., Bader, R.: Klangliche Rauhigkeit, ihre Wahrnehmung und Messung [Timbre roughness, its perception and measurement]. In: Bader, R. (ed.) Musical Acoustics, Neurocognition and Psychology of Music, vol. 25, pp. 101–144. Hamburger Jahrbuch für Musikwissenschaft (2009)

    Google Scholar 

  84. Shahin, A.J., Roberts, L.E., Chau, W., Trainor, L.J., Miller, L.M.: Music training leads to the development of timbre-specific gamma band activity. NeuroImage 41(1), 113–122 (2008)

    Article  Google Scholar 

  85. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27, 125–140 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  86. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27, 219–246 (1962)

    Article  MathSciNet  Google Scholar 

  87. Smith, E.C., Lewicki, M.S.: Efficient auditory coding. Nature 439(23), 978–982 (2006)

    Article  Google Scholar 

  88. Smith, E., Lewicki, M.S.: Efficient coding of Time-Relative Strucutre Using Spikes. Neural Computation 17, 19–45 (2005)

    Article  MATH  Google Scholar 

  89. Stevens, S.S.: Procedure for calculation loudness: Mark VI. J. Acoust. Soc. Am. 33, 1577 (1961)

    Article  Google Scholar 

  90. Stumpf, C.: Die Sprachlaute. Experimentall-phonetische Untersuchungen nebst einem Anhang über Instrumentenklänge [The speech sounds. Experimental-phonetic investigations next to an appendix about instrumental sounds]. Springer, Berlin (1926)

    Google Scholar 

  91. Toiviainen, P., Tervaniemi, M., Louhvuori, J., Saher, M., Huotilainen, M., Näätänen, R.: Timbre similarity: convergence of neural, behavioral, and computational approaches. Music Perception 16, 223–241 (1998)

    Article  Google Scholar 

  92. Toiviainen, P.: The organisation of timbres - a two-stage neural network model. In: Widmer, G. (ed.) Proc. of the ECAI 1992 Workshop on AI and Music. Austrian Society for AI, Vienna (1992)

    Google Scholar 

  93. Van Immerseel, L., Peeters, S.: Digital implementation of linear gammatone filters: Comparison of design methods. Acoustics Research Letters Online 4(3), 59–64 (2003)

    Article  Google Scholar 

  94. Wedin, L., Goude, G.: Dimension Analysis of the Perception of Instrumental Timbre. Scand. J. Psychology 13, 228–240 (1972)

    Article  Google Scholar 

  95. Wessel, D.L.: Timbre Space as a Musical Control Structure. Computer Music Journal 3(2), 45–52 (1979)

    Article  MathSciNet  Google Scholar 

  96. Winsbergs, S., DeSoete, G.: A latent class approach to fitting the weighted Euclidean model, CLASCAL. Psychometrika 58, 315–330 (1993)

    Article  Google Scholar 

  97. Ziegenhals, G.: Analyse von Musikinstrumentenschallen mittels psychoakustischem Merkmalssatz [Analysis of musical instrument sounds by psychoachoustic properties]. In: Programmheft DAGA 2008, Dresden, pp. 208–209 (2008)

    Google Scholar 

  98. Zwicker, E., Scharf, B.: A model of Loudness Summation. Psychological Review 72(1), 3–26 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bader .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bader, R. (2013). Timbre. In: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology. Current Research in Systematic Musicology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36098-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36098-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36097-8

  • Online ISBN: 978-3-642-36098-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics