Skip to main content

Recent Advances in Nonsingular Terminal Sliding Mode Control Method

  • Chapter
  • First Online:
Applied Methods and Techniques for Mechatronic Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 452))

Abstract

The terminal sliding mode (TSM) control method has become a hot topic in recent years due to its special merit on finite-time convergence and good robustness. One critical issue is how to balance the singularity of control law and the fast convergence of closed-loop system. The chapter reviews the research history of the singularity and introduces the recent advance on nonsingular and fast terminal sliding mode (NFTSM) control method. The synthesis of NFTSM controller synthesis is based on a newly proposed nonsingular fast terminal function and a terminal attractor with nonnegative exponential coefficient. Both theoretical analyses and computer simulations have proved its effectiveness under the condition that plant uncertainties are bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young KD, Utkin VI, Ozguner U (1996) A control engineer’s guide to sliding mode control. In: Proceedings of 1996 IEEE international workshop on variable structure systems, VSS’96, pp 1–14

    Google Scholar 

  2. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Industr Electron 40(1):23–36

    Article  Google Scholar 

  3. Furuta K (1990) Sliding mode control of a discrete system. Syst Control Lett 14(2):145–152

    Article  MATH  MathSciNet  Google Scholar 

  4. Xu H, Mirmirani MD, Ioannou PA (2004) Adaptive sliding mode control design for a hypersonic flight vehicle. J Guidance Control Dyn 27(5):829–838

    Article  Google Scholar 

  5. Koshkouei AJ, Burnham KJ, Zinober AS (2005) Dynamic sliding mode control design. IEE Proc Control Theory Appl 152(4):392–396

    Article  Google Scholar 

  6. Bouabdallah S, Siegwart R (2005) Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005, Apr 2005, pp 2247–2252

    Google Scholar 

  7. Shang A, Wang Z (2013) Adaptive backstepping second order sliding mode control of non-linear systems. Int J Model Ident Control 19(2):195–201

    Article  Google Scholar 

  8. Venkataraman ST, Gulati S (1991) Terminal sliding modes: a new approach to nonlinear control synthesis. In: Fifth International Conference on advanced robotics, 1991. ‘Robots in Unstructured Environments’, 91 ICAR., Jun 1991, pp 443–448

    Google Scholar 

  9. Zhuang KY, Zhang KQ (2002) Terminal sliding mode control for high-order nonlinear dynamic systems. J Zhejiang Univ 36(5):482–539 (Engineering Science)

    Google Scholar 

  10. Bhave M, Janardhanan S, Dewan L (2013) An efficient control of rigid robotic manipulator with uncertainties using higher order sliding mode control. Int J Model Ident Control 19(2):179–185

    Article  MATH  Google Scholar 

  11. Du H, Li S (2012) Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique. Int J Model Ident Control 16(4):327–333

    Article  Google Scholar 

  12. Man Z, Yu X H (1996). Terminal sliding mode control of MIMO linear systems. In: Proceedings of the 35th IEEE on decision and control, 1996, vol 4, pp 4619–4624

    Google Scholar 

  13. Wu Y, Yu X, Man Z (1998) Terminal sliding mode control design for uncertain dynamic systems. Syst Control Lett 34(5):281–287

    Article  MATH  MathSciNet  Google Scholar 

  14. Man Z, Paplinski AP, Wu HR (1994) A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Autom Control 39(12):2464–2469

    Article  MATH  MathSciNet  Google Scholar 

  15. Yu X, Man Z, Wu Y (1997) Terminal sliding modes with fast transient performance. In: Proceedings of the 36th IEEE conference on decision and control, 1997, vol 2, pp 962–963

    Google Scholar 

  16. Yu S, Guo G, Man Z, Du J (2006) Global fast terminal sliding mode control for robotic manipulators. Int J Model Ident Control 1(1):72–79

    Article  Google Scholar 

  17. Kang Y, Xi HS, Ji HB, Wang J (2003) Fast terminal sliding mode control of uncertain multivariable linear systems. J Univ Sci Technol China 33(6):718–725

    MathSciNet  Google Scholar 

  18. Yu S, Yu X, Man Z (2000) Robust global terminal sliding mode control of SISO nonlinear uncertain systems. In: Proceedings of the 39th IEEE conference on decision and control, vol 3, pp 2198–2203

    Google Scholar 

  19. Yu X, Man Z (2002) Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans Circ Syst I Fundam Theory Appl 49(2):261–264

    Article  MathSciNet  Google Scholar 

  20. Feng Y, Bao S, Yu XH (2002) Design method of non-singular terminal sliding mode control systems. Control Decis 17(2):194–198

    Google Scholar 

  21. Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167

    Article  MathSciNet  Google Scholar 

  22. Feng Y, Yu X, Man Z (2001). Non-singular terminal sliding mode control and its application for robot manipulators. In: IEEE international symposium on circuits and systems, ISCAS, May 2001, vol 3, pp 545–548

    Google Scholar 

  23. Zhang KD, Hu YM, Hu ZH (2007) Sliding mode control of low chattering non-singular terminal. J Guangdong Univ Technol 24(3):32–36

    MATH  Google Scholar 

  24. Hu JB, Shi MH, Zhang KY (2005) Terminal sliding mode control for a class of nonlinear systems. Control Theory Appl 22(3):495–502

    Google Scholar 

  25. Li SB, Li KQ, Wang JQ, Gao F (2009) Nonsingular and fast terminal sliding model control method. Inf Control 38(1):1–8

    Google Scholar 

  26. Yoshimura T (2012) Adaptive sliding mode control for uncertain discrete-time systems using an improved reaching law. Int J Model Ident Control 16(4):380–391

    Article  Google Scholar 

  27. Parra-Vega V, Hirzinger G (2000). Finite-time tracking for robot manipulators with singularity-free continuous control: a passivity-based approach. In: Proceedings of the 39th IEEE conference on decision and control, 2000, vol 5, pp 5085–5090

    Google Scholar 

  28. Soliman HM, Bayoumi EH, Soliman M (2012) Robust guaranteed-cost sliding control for brushless DC motors by LMI. Int J Model Ident Control 17(3):251–260

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the NSF of China with grant number 51205228 for the support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, S.E., Deng, K. (2014). Recent Advances in Nonsingular Terminal Sliding Mode Control Method. In: Liu, L., Zhu, Q., Cheng, L., Wang, Y., Zhao, D. (eds) Applied Methods and Techniques for Mechatronic Systems. Lecture Notes in Control and Information Sciences, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36385-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36385-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36384-9

  • Online ISBN: 978-3-642-36385-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics