Skip to main content

Computational Physics on Graphics Processing Units

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Included in the following conference series:

Abstract

The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics and quantum simulations for electronic structure calculations using the density functional theory, wave function techniques and quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Macedonia, M.: The GPU enters computing’s mainstream. Computer 36(10), 106–108 (2003)

    Article  Google Scholar 

  2. NVIDIA Corporation: NVIDIA CUDA C programming guide, Version 4.2 (2012)

    Google Scholar 

  3. McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)

    Article  Google Scholar 

  4. Tembre, B.L., Cammon, J.M.: Ligand-receptor interactions. Computers & Amp; Chemistry 8(4), 281–283 (1984)

    Article  Google Scholar 

  5. Gao, J., Kuczera, K., Tidor, B., Karplus, M.: Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244(4908), 1069–1072 (1989)

    Article  Google Scholar 

  6. Samish, I., MacDermaid, C.M., Perez-Aguilar, J.M., Saven, J.G.: Theoretical and computational protein design. Annual Review of Physical Chemistry 62(1), 129–149 (2011)

    Article  Google Scholar 

  7. Berkowitz, M.L., Kindt, J.T.: Molecular Detailed Simulations of Lipid Bilayers, pp. 253–286. John Wiley & Sons, Inc. (2010)

    Google Scholar 

  8. Lyubartsev, A.P., Rabinovich, A.L.: Recent development in computer simulations of lipid bilayers. Soft Matter 7, 25–39 (2011)

    Article  Google Scholar 

  9. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J., Peacock, J.A., Cole, S., Thomas, P., Couchman, H., Evrard, A., Colberg, J., Pearce, F.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435(7042), 629–636 (2005)

    Article  Google Scholar 

  10. Chinchilla, F., Gamblin, T., Sommervoll, M., Prins, J.: Parallel N-body simulation using GPUs. Technical report, University of North Carolina (2004)

    Google Scholar 

  11. Brodtkorb, A.R., Hagen, T.R., Sætra, M.L.: Graphics processing unit (GPU) programming strategies and trends in GPU computing. Journal of Parallel and Distributed Computing (2012)

    Google Scholar 

  12. Stone, J.E., Hardy, D.J., Ufimtsev, I.S., Schulten, K.: GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling 29(2), 116–125 (2010)

    Article  Google Scholar 

  13. Nyland, L., Harris, M., Prins, J.: Fast N-Body Simulation with CUDA. In: GPU Gems 3, ch. 31, vol. 3. Addison-Wesley Professional (2007)

    Google Scholar 

  14. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (2002)

    Google Scholar 

  15. Kipfer, P., Segal, M., Westermann, R.: Uberflow: a GPU-based particle engine. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 2004, pp. 115–122. ACM, New York (2004)

    Chapter  Google Scholar 

  16. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore GPUs. Technical report, NVIDIA (2008)

    Google Scholar 

  17. Ha, L., Krüger, J., Silva, C.T.: Fast four-way parallel radix sorting on GPUs. Computer Graphics Forum 28(8), 2368–2378 (2009)

    Article  Google Scholar 

  18. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. Journal of Computational Physics 227(10), 5342–5359 (2008)

    Article  MATH  Google Scholar 

  19. Moreland, K., Angel, E.: The FFT on a GPU. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS 2003, pp. 112–119. Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  20. Govindaraju, N.K., Manocha, D.: Cache-efficient numerical algorithms using graphics hardware. Technical report, The University of North Carolina (2007)

    Google Scholar 

  21. Gu, L., Li, X., Siegel, J.: An empirically tuned 2d and 3d FFT library on CUDA GPU. In: Proceedings of the 24th ACM International Conference on Supercomputing, ICS 2010, pp. 305–314. ACM, New York (2010)

    Chapter  Google Scholar 

  22. Chen, Y., Cui, X., Mei, H.: Large-scale FFT on GPU clusters. In: Proceedings of the 24th ACM International Conference on Supercomputing, ICS 2010, pp. 315–324. ACM, New York (2010)

    Chapter  Google Scholar 

  23. Ahmed, M., Haridy, O.: A comparative benchmarking of the FFT on Fermi and Evergreen GPUs. In: 2011 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 127–128 (2011)

    Google Scholar 

  24. Skeel, R.D., Tezcan, I., Hardy, D.J.: Multiple grid methods for classical molecular dynamics. Journal of Computational Chemistry 23(6), 673–684 (2002)

    Article  Google Scholar 

  25. Hardy, D.J., Stone, J.E., Schulten, K.: Multilevel summation of electrostatic potentials using graphics processing units. Parallel Computing 35(3), 164–177 (2009)

    Article  Google Scholar 

  26. Goodnight, N., Woolley, C., Lewin, G., Luebke, D., Humphreys, G.: A multigrid solver for boundary value problems using programmable graphics hardware. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005, ACM, New York (2005)

    Google Scholar 

  27. McAdams, A., Sifakis, E., Teran, J.: A parallel multigrid poisson solver for fluids simulation on large grids. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2010, pp. 65–74. Eurographics Association, Aire-la-Ville (2010)

    Google Scholar 

  28. Meagher, D.: Octree Encoding: a New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Rensselaer Polytechnic Institute. Image Processing Laboratory (1980)

    Google Scholar 

  29. Lefebvre, S., Hornus, S., Neyret, F.: Octree Textures on the GPU. In: GPU Gems 2, ch. 37, vol. 2. Addison-Wesley Professional (2005)

    Google Scholar 

  30. Belleman, R.G., Bédorf, J., Zwart, S.F.P.: High performance direct gravitational n-body simulations on graphics processing units ii: An implementation in cuda. New Astronomy 13(2), 103–112 (2008)

    Article  Google Scholar 

  31. Hamada, T., Narumi, T., Yokota, R., Yasuoka, K., Nitadori, K., Taiji, M.: 42 TFlops hierarchical N-body simulations on GPUs with applications in both astrophysics and turbulence. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC 2009, pp. 62:1–62:12. ACM, New York (2009)

    Google Scholar 

  32. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. Journal of Computational Physics 60(2), 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of Computational Physics 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gumerov, N.A., Duraiswami, R.: Fast multipole methods on graphics processors. Journal of Computational Physics 227(18), 8290–8313 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Darve, E., Cecka, C., Takahashi, T.: The fast multipole method on parallel clusters, multicore processors, and graphics processing units. Comptes Rendus Mécanique 339(2-3), 185–193 (2011)

    Article  MATH  Google Scholar 

  36. Takahashi, T., Cecka, C., Fong, W., Darve, E.: Optimizing the multipole-to-local operator in the fast multipole method for graphical processing units. International Journal for Numerical Methods in Engineering 89(1), 105–133 (2012)

    Article  MATH  Google Scholar 

  37. Yokota, R., Barba, L., Narumi, T., Yasuoka, K.: Petascale turbulence simulation using a highly parallel fast multipole method on GPUs. Computer Physics Communications (2012)

    Google Scholar 

  38. Götz, A.W., Williamson, M.J., Xu, D., Poole, D., Le Grand, S., Walker, R.C.: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized Born. Journal of Chemical Theory and Computation 8(5), 1542–1555 (2012)

    Article  Google Scholar 

  39. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Google Scholar 

  40. Parr, R., Yang, W.: Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press, USA (1994)

    Google Scholar 

  41. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  Google Scholar 

  42. Yasuda, K.: Accelerating density functional calculations with graphics processing unit. Journal of Chemical Theory and Computation 4(8), 1230–1236 (2008)

    Article  Google Scholar 

  43. Yasuda, K.: Two-electron integral evaluation on the graphics processor unit. Journal of Computational Chemistry 29(3), 334–342 (2008)

    Article  Google Scholar 

  44. Ufimtsev, I., Martinez, T.: Graphical processing units for quantum chemistry. Computing in Science Engineering 10(6), 26–34 (2008)

    Article  Google Scholar 

  45. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. Journal of Chemical Theory and Computation 4(2), 222–231 (2008)

    Article  Google Scholar 

  46. Luehr, N., Ufimtsev, I.S., Martinez, T.J.: Dynamic precision for electron repulsion integral evaluation on graphical processing units (GPUs). Journal of Chemical Theory and Computation 7(4), 949–954 (2011)

    Article  Google Scholar 

  47. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. Journal of Chemical Theory and Computation 5(4), 1004–1015 (2009)

    Article  Google Scholar 

  48. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. Journal of Chemical Theory and Computation 5(10), 2619–2628 (2009)

    Article  Google Scholar 

  49. Asadchev, A., Allada, V., Felder, J., Bode, B.M., Gordon, M.S., Windus, T.L.: Uncontracted Rys quadrature implementation of up to G functions on graphical processing units. Journal of Chemical Theory and Computation 6(3), 696–704 (2010)

    Article  Google Scholar 

  50. Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.F., Neelov, A., Goedecker, S.: Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures. The Journal of Chemical Physics 131(3), 034103 (2009)

    Article  Google Scholar 

  51. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., Schneider, R.: Daubechies wavelets as a basis set for density functional pseudopotential calculations. The Journal of Chemical Physics 129(1), 014109 (2008)

    Article  Google Scholar 

  52. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  53. Maintz, S., Eck, B., Dronskowski, R.: Speeding up plane-wave electronic-structure calculations using graphics-processing units. Computer Physics Communications 182(7), 1421–1427 (2011)

    Article  Google Scholar 

  54. Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., Klahr, D., Guignon, T., Fleurat-Lessard, P.: Accelerating VASP electronic structure calculations using graphic processing units. Journal of Computational Chemistry (2012) n/a–n/a

    Google Scholar 

  55. Hutchinson, M., Widom, M.: VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron. Computer Physics Communications 183(7), 1422–1426 (2012)

    Article  Google Scholar 

  56. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  57. Girotto, I., Varini, N., Spiga, F., Cavazzoni, C., Ceresoli, D., Martin-Samos, L., Gorni, T.: Enabling of Quantum-ESPRESSO to petascale scientific challenges. In: PRACE Whitepapers. PRACE (2012)

    Google Scholar 

  58. Spiga, F., Girotto, I.: phiGEMM: A CPU-GPU library for porting Quantum ESPRESSO on hybrid systems. In: 2012 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 368–375 (February 2012)

    Google Scholar 

  59. Wang, L., Wu, Y., Jia, W., Gao, W., Chi, X., Wang, L.W.: Large scale plane wave pseudopotential density functional theory calculations on GPU clusters. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 71:1–71:10. ACM, New York (2011)

    Google Scholar 

  60. Jia, W., Cao, Z., Wang, L., Fu, J., Chi, X., Gao, W., Wang, L.W.: The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Computer Physics Communications 184(1), 9–18 (2013)

    Article  Google Scholar 

  61. Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Møller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G.K.H., Nieminen, R.M., Nørskov, J.K., Puska, M., Rantala, T.T., Schiøtz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Journal of Physics: Condensed Matter 22(25), 253202 (2010)

    Article  Google Scholar 

  62. Hakala, S., Havu, V., Enkovaara, J., Nieminen, R.: Parallel Electronic Structure Calculations Using Multiple Graphics Processing Units (GPUs). In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 63–76. Springer, Heidelberg (2013)

    Google Scholar 

  63. Castro, A., Appel, H., Oliveira, M., Rozzi, C.A., Andrade, X., Lorenzen, F., Marques, M.A.L., Gross, E.K.U., Rubio, A.: Octopus: a tool for the application of time-dependent density functional theory. Physica Status Solidi (B) 243(11), 2465–2488 (2006)

    Article  Google Scholar 

  64. Andrade, X., Alberdi-Rodriguez, J., Strubbe, D.A., Oliveira, M.J.T., Nogueira, F., Castro, A., Muguerza, J., Arruabarrena, A., Louie, S.G., Aspuru-Guzik, A., Rubio, A., Marques, M.A.L.: Time-dependent density-functional theory in massively parallel computer architectures: the Octopus project. Journal of Physics: Condensed Matter 24(23), 233202 (2012)

    Article  Google Scholar 

  65. Isborn, C.M., Luehr, N., Ufimtsev, I.S., Martinez, T.J.: Excited-state electronic structure with configuration interaction singles and and Tamm-Dancoff time-dependent density functional theory on graphical processing units. Journal of Chemical Theory and Computation 7(6), 1814–1823 (2011)

    Article  Google Scholar 

  66. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Westview Press (1995)

    Google Scholar 

  67. Crewther, R.J.: Introduction to quantum field theory. ArXiv High Energy Physics - Theory e-prints (1995)

    Google Scholar 

  68. Fodor, Z., Hoelbling, C.: Light hadron masses from lattice QCD. Reviews of Modern Physics 84, 449–495 (2012)

    Article  Google Scholar 

  69. Göckeler, M., Hägler, P., Horsley, R., Pleiter, D., Rakow, P.E.L., Schäfer, A., Schierholz, G., Zanotti, J.M.: Generalized parton distributions and structure functions from full lattice QCD. Nuclear Physics B Proceedings Supplements 140, 399–404 (2005)

    Article  Google Scholar 

  70. Alexandrou, C., Brinet, M., Carbonell, J., Constantinou, M., Guichon, P., et al.: Nucleon form factors and moments of parton distributions in twisted mass lattice QCD. In: Proceedings of The XXIst International Europhysics Conference on High Energy Physics, EPS-HEP 2011, Grenoble, Rhones Alpes France, July 21-27, vol. 308 (2011)

    Google Scholar 

  71. McNeile, C., Davies, C.T.H., Follana, E., Hornbostel, K., Lepage, G.P.: High-precision \({f}_{{B}_{s}}\) and heavy quark effective theory from relativistic lattice QCD. Physical Review D 85, 031503 (2012)

    Article  Google Scholar 

  72. Rummukainen, K.: QCD-like technicolor on the lattice. In: Llanes-Estrada, F.J., Peláez, J.R. (eds.). American Institute of Physics Conference Series, vol. 1343, pp. 51–56 (2011)

    Google Scholar 

  73. Petreczky, P.: Progress in finite temperature lattice QCD. Journal of Physics G: Nuclear and Particle Physics 35(4), 044033 (2008)

    Article  Google Scholar 

  74. Petreczky, P.: Recent progress in lattice QCD at finite temperature. ArXiv e-prints (2009)

    Google Scholar 

  75. Fodor, Z., Katz, S.D.: The phase diagram of quantum chromodynamics. ArXiv e-prints (August 2009)

    Google Scholar 

  76. Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge Monographs on Mathematical Physics. Cambridge University Press, The Edinburgh Building (1994)

    Book  Google Scholar 

  77. Rothe, H.J.: Lattice Gauge Theories: An Introduction, 3rd edn. World Scientific Publishing Company, Hackendsack (2005)

    MATH  Google Scholar 

  78. Gupta, R.: Introduction to lattice QCD. ArXiv High Energy Physics - Lattice e-prints (1998)

    Google Scholar 

  79. Egri, G., Fodor, Z., Hoelbling, C., Katz, S., Nogradi, D., Szabo, K.: Lattice QCD as a video game. Computer Physics Communications 177, 631–639 (2007)

    Article  Google Scholar 

  80. Schröck, M., Vogt, H.: Gauge fixing using overrelaxation and simulated annealing on GPUs. ArXiv e-prints (2012)

    Google Scholar 

  81. Mawhinney, R.D.: The 1 teraflops QCDSP computer. Parallel Computing 25(10-11), 1281–1296 (1999)

    Article  MATH  Google Scholar 

  82. Chen, D., Christ, N.H., Cristian, C., Dong, Z., Gara, A., Garg, K., Joo, B., Kim, C., Levkova, L., Liao, X., Mawhinney, R.D., Ohta, S., Wettig, T.: QCDOC: A 10-teraflops scale computer for lattice QCD. In: Nuclear Physics B Proceedings Supplements, vol. 94, pp. 825–832 (March 2001)

    Google Scholar 

  83. Bhanot, G., Chen, D., Gara, A., Vranas, P.M.: The BlueGene / L supercomputer. Nuclear Physics B - Proceedings Supplements 119, 114–121 (2003)

    Article  Google Scholar 

  84. Ammendola, R., Biagioni, A., Frezza, O., Lo Cicero, F., Lonardo, A., Paolucci, P.S., Petronzio, R., Rossetti, D., Salamon, A., Salina, G., Simula, F., Tantalo, N., Tosoratto, L., Vicini, P.: apeNET+: a 3D toroidal network enabling petaFLOPS scale Lattice QCD simulations on commodity clusters. In: Proceedings of The XXVIII International Symposium on Lattice Field Theory, Villasimius, Sardinia Italy, June 14-19 (2010)

    Google Scholar 

  85. Shirakawa, T., Hoshino, T., Oyanagi, Y., Iwasaki, Y., Yoshie, T.: QCDPAX-an MIMD array of vector processors for the numerical simulation of quantum chromodynamics. In: Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Supercomputing 1989, pp. 495–504. ACM, New York (1989)

    Chapter  Google Scholar 

  86. Aoki, Y., Fodor, Z., Katz, S.D., Szabó, K.K.: The QCD transition temperature: Results with physical masses in the continuum limit. Physics Letters B 643, 46–54 (2006)

    Article  Google Scholar 

  87. Babich, R., Clark, M.A., Joó, B., Shi, G., Brower, R.C., Gottlieb, S.: Scaling lattice QCD beyond 100 GPUs. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 70:1–70:11. ACM, New York (2011)

    Google Scholar 

  88. Hasenbusch, M., Jansen, K.: Speeding up the HMC: QCD with clover-improved wilson fermions. Nuclear Physics B Proceedings Supplements 119, 982–984 (2003)

    Article  MATH  Google Scholar 

  89. Osaki, Y., Ishikawa, K.I.: Domain decomposition method on GPU cluster. In: Proceedings of The XXVIII International Symposium on Lattice Field Theory, Villasimius, Sardinia Italy, June 14-19 (2010)

    Google Scholar 

  90. Bonati, C., Cossu, G., D’Elia, M., Incardona, P.: QCD simulations with staggered fermions on GPUs. Computer Physics Communications 183, 853–863 (2012)

    Article  Google Scholar 

  91. Winter, F.: Accelerating QDP++ using GPUs. In: Proceedings of the XXIX International Symposium on Lattice Field Theory (Lattice 2011), Squaw Valley, Lake Tahoe, California, July 10-16 (2011)

    Google Scholar 

  92. Walk, B., Wittig, H., Dranischnikow, E., Schomer, E.: Implementation of the Neuberger overlap operator in GPUs. In: Proceedings of The XXVIII International Symposium on Lattice Field Theory, Villasimius, Sardinia Italy, June 14-19 (2010)

    Google Scholar 

  93. Alexandru, A., Lujan, M., Pelissier, C., Gamari, B., Lee, F.X.: Efficient implementation of the overlap operator on multi-GPUs. ArXiv e-prints (2011)

    Google Scholar 

  94. Cardoso, N., Bicudo, P.: SU (2) lattice gauge theory simulations on Fermi GPUs. Journal of Computational Physics 230, 3998–4010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  95. Cardoso, N., Bicudo, P.: Generating SU(Nc) pure gauge lattice QCD configurations on GPUs with CUDA. ArXiv e-prints (2011)

    Google Scholar 

  96. Amado, A., Cardoso, N., Cardoso, M., Bicudo, P.: Study of compact U(1) flux tubes in 3+1 dimensions in lattice gauge theory using GPU’s. ArXiv e-prints (2012)

    Google Scholar 

  97. Bordag, M., Demchik, V., Gulov, A., Skalozub, V.: The type of the phase transition and coupling values in λφ 4 model. International Journal of Modern Physics A 27, 50116 (2012)

    Article  Google Scholar 

  98. Chiu, T.W., Hsieh, T.H., Mao, Y.Y.: Pseudoscalar Meson in two flavors QCD with the optimal domain-wall fermion. Physics Letters B B717, 420 (2012)

    Article  Google Scholar 

  99. Munshi, A.: The OpenCL specification, Version 1.2 (2011)

    Google Scholar 

  100. Bach, M., Lindenstruth, V., Philipsen, O., Pinke, C.: Lattice QCD based on OpenCL. ArXiv e-prints (2012)

    Google Scholar 

  101. IBM Systems and Technology: IBM System Blue Gene/Q – Data Sheet (2011)

    Google Scholar 

  102. Foulkes, W.M.C., Mitas, L., Needs, R.J., Rajagopal, G.: Quantum Monte Carlo simulations of solids. Reviews of Modern Physics 73, 33–83 (2001)

    Article  Google Scholar 

  103. Harju, A., Barbiellini, B., Siljamaki, S., Nieminen, R., Ortiz, G.: Stochastic gradient approximation: An efficient method to optimize many-body wave functions. Physical Review Letters 79(7), 1173–1177 (1997)

    Article  Google Scholar 

  104. Harju, A.: Variational Monte Carlo for interacting electrons in quantum dots. Journal of Low Temperature Physics 140(3-4), 181–210 (2005)

    Article  Google Scholar 

  105. Anderson, A.G., Goddard III, W.A., Schröder, P.: Quantum Monte Carlo on graphical processing units. Computer Physics Communications 177(3), 298–306 (2007)

    Article  MATH  Google Scholar 

  106. Esler, K., Kim, J., Ceperley, D., Shulenburger, L.: Accelerating quantum Monte Carlo simulations of real materials on GPU clusters. Computing in Science and Engineering 14(1), 40–51 (2012)

    Article  Google Scholar 

  107. Wölfle, A.W.G., Walker, R.C.: Quantum chemistry on graphics processing units. In: Wheeler, R.A. (ed.). Annual Reports in Computational Chemistry, ch. 2, vol. 6, pp. 21–35. Elsevier (2010)

    Google Scholar 

  108. DePrince, A., Hammond, J.: Quantum chemical many-body theory on heterogeneous nodes. In: 2011 Symposium on Application Accelerators in High-Performance Computing (SAAHPC), pp. 131–140 (2011)

    Google Scholar 

  109. Ihnatsenka, S.: Computation of electron quantum transport in graphene nanoribbons using GPU. Computer Physics Communications 183(3), 543–546 (2012)

    Article  Google Scholar 

  110. Hubbard, J.: Electron correlations in narrow energy bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276(1364), 238–257 (1963)

    Google Scholar 

  111. Gutzwiller, M.C.: Effect of correlation on the ferromagnetism of transition metals. Physical Review Letters 10, 159–162 (1963)

    Article  Google Scholar 

  112. Meredith, J.S., Alvarez, G., Maier, T.A., Schulthess, T.C., Vetter, J.S.: Accuracy and performance of graphics processors: A quantum Monte Carlo application case study. Parallel Computing 35(3), 151–163 (2009)

    Article  Google Scholar 

  113. Siro, T., Harju, A.: Exact diagonalization of the Hubbard model on graphics processing units. Computer Physics Communications 183(9), 1884–1889 (2012)

    Article  Google Scholar 

  114. NVIDIA Corporation: NVIDIA GPUDirectTM Technology (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harju, A., Siro, T., Canova, F.F., Hakala, S., Rantalaiho, T. (2013). Computational Physics on Graphics Processing Units. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics