Skip to main content

5 Organopollutant Degradation by Wood Decay Basidiomycetes

  • Chapter
  • First Online:
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Ligninolytic ‘white-rot fungi’ degrade a wide range of organopollutants such as polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals, pentachlorophenol (PCP), pesticides, and explosives. Unique and powerful extracellular oxidizing systems, as well as intracellular metabolic processes, have been repeatedly invoked to explain the extraordinary oxidation potential of these microbes, but the precise mechanisms remain elusive. Recent advances in the biochemistry and genomics of white-rot fungi have increased knowledge and understanding of both lignin and organopollutant metabolism. In this chapter, we review the biochemistry of lignin peroxidase, manganese peroxidase, laccase, peroxide generation and other oxidoreductases such as cytochrome P450s. Comparative genome analysis of gene families encoding these enzymes is described with emphasis on gene structure, phylogeny, and expression. Ultimately, increasing genome resources will elucidate mechanisms of ligninolysis and simultaneously serve as a framework for development of effective bioremediation and related bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Koc H et al (2004) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    PubMed  Google Scholar 

  • Akileswaran L, Alic M et al (1993) Isolation and transformation of uracil auxotrophs of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Curr Genet 23:351–356

    PubMed  CAS  Google Scholar 

  • Alic MM (1990) Mating system and DNA transformation of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Diss Abstr Int B 51(8):3681

    Google Scholar 

  • Alic M, Gold M (1991) Genetics and molecular biology of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. In: Bennett J, Lasure L (eds) More gene manipulations in fungi. Academic, New York, pp 319–341

    Google Scholar 

  • Alic M, Kornegay JR et al (1989) Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 55:406–411

    PubMed  CAS  Google Scholar 

  • Alic M, Clark EK et al (1990) Transformation of Phanerochaete chrysosporium and Neurospora crassa with adenine biosynthetic genes from Schizophyllum commune. Curr Genet 17:305–311

    CAS  Google Scholar 

  • Alic M, Mayfield MB et al (1991) Homologous transformation of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Curr Genet 19:491–494

    CAS  Google Scholar 

  • Alic M, Akileswaran L et al (1993) Gene replacement in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Gene 136:307–311

    PubMed  CAS  Google Scholar 

  • Alic M, Akileswaran L et al (1997) Characterization of the gene encoding manganese peroxidase isozyme 3 from Phanerochaete chrysosporium. Biochim Biophys Acta 1338(1):1–7

    PubMed  CAS  Google Scholar 

  • Alvarez JM, Canessa P et al (2009) Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet Biol 46(1):104–111

    PubMed  CAS  Google Scholar 

  • Amitai G, Adani R et al (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438(3):195–200

    PubMed  CAS  Google Scholar 

  • Ander P, Marzullo L (1997) Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J Biotechnol 53(2–3):115–131

    PubMed  CAS  Google Scholar 

  • Artolozaga MJ, Kubatova E et al (1997) Pyranose 2-oxidase from Phanerochaete chrysosporium–further biochemical characterisation. Appl Microbiol Biotechnol 47(5):508–514

    PubMed  CAS  Google Scholar 

  • Asada Y, Watanabe A et al (1995) Purification and characterization of an aryl-alcohol oxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biosci Biotech Biochem 59:1339–1341

    CAS  Google Scholar 

  • Bao W, Fukushima Y et al (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    PubMed  CAS  Google Scholar 

  • Bartholomew K, Dos Santos G et al (2001) Genetic transformation of Trametes versicolor to phleomycin resistance with the dominant selectable marker shble. Appl Microbiol Biotechnol 56(1–2):201–204

    PubMed  CAS  Google Scholar 

  • Belinky PA, Flikshtein N et al (2003) Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 69(11):6500–6506

    PubMed  CAS  Google Scholar 

  • Benotti MJ, Trenholm RA et al (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43(3):597–603

    PubMed  CAS  Google Scholar 

  • Bey M, Berrin JG et al (2011) Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microb Cell Fact 10:113

    PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y et al (1996a) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(1):292–295

    PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y et al (1996b) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2547–2553

    PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y et al (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63(7):2495–2501

    PubMed  CAS  Google Scholar 

  • Birch PR, Sims PF et al (1998) A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium. J Appl Microbiol 85(3):417–424

    PubMed  CAS  Google Scholar 

  • Blanchette R (1991) Delignification by wood-decay fungi. Ann Rev Phytopath 29:381–398

    CAS  Google Scholar 

  • Bogan B, Lamar R et al (1996a) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788–1792

    PubMed  CAS  Google Scholar 

  • Bogan BW, Schoenike B et al (1996b) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62(10):3697–3703

    PubMed  CAS  Google Scholar 

  • Bogan B, Schoenike B et al (1996c) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386

    PubMed  CAS  Google Scholar 

  • Bonnarme P, Jeffries T (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidase from lignin-degrading white-rot fungi. Appl Environ Microbiol 56:210–217

    PubMed  CAS  Google Scholar 

  • Bourbonnais R, Paice MG et al (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    PubMed  CAS  Google Scholar 

  • Bourbonnais R, Leech D et al (1998) Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta 1379(3):381–390

    PubMed  CAS  Google Scholar 

  • Brown JA, Glenn JK et al (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172(6):3125–3130

    PubMed  CAS  Google Scholar 

  • Brown J, Alic M et al (1991) Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol 173:4101–4106

    PubMed  CAS  Google Scholar 

  • Brown J, Li D et al (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol 59:4295–4299

    PubMed  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55(1):154–158

    PubMed  CAS  Google Scholar 

  • Camarero S, Sarkar S et al (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274(15):10324–10330

    PubMed  CAS  Google Scholar 

  • Camarero S, Ibarra D et al (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71(4):1775–1784

    PubMed  CAS  Google Scholar 

  • Casillas RP, Crow SA Jr et al (1996) Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16(4):205–215

    PubMed  CAS  Google Scholar 

  • Castanera R, Perez G et al (2012) Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Appl Environ Microbiol 78(11):4037–4045

    PubMed  CAS  Google Scholar 

  • Chigu NL, Hirosue S et al (2010) Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 87(5):1907–1916

    PubMed  CAS  Google Scholar 

  • Cohen R, Hadar Y et al (2001) Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol 3(5):312–322

    PubMed  CAS  Google Scholar 

  • Cohen R, Persky L et al (2002a) Mn2+ alters peroxidase profiles and lignin degradation by the white-rot fungus Pleurotus ostreatus under different nutritional and growth conditions. Appl Biochem Biotechnol 102–103(1–6):415–429

    PubMed  Google Scholar 

  • Cohen R, Yarden O et al (2002b) Lignocellulose affects Mn2+ regulation of peroxidase transcript levels in solid-state cultures of Pleurotus ostreatus. Appl Environ Microbiol 68(6):3156–3158

    PubMed  CAS  Google Scholar 

  • Coll P, Tabernero C et al (1993) Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971). Appl Environ Microbiol 59:4129–4135

    PubMed  CAS  Google Scholar 

  • Collins PJ, O'Brien MM et al (1999) Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from Trametes versicolor. Appl Environ Microbiol 65(3):1343–1347

    PubMed  CAS  Google Scholar 

  • Conesa A, van den Hondel CA et al (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66(7):3016–3023

    PubMed  CAS  Google Scholar 

  • Cortes-Espinosa DV, Absalon AE et al (2011) Heterologous expression of manganese peroxidase in Aspergillus niger and its effect on phenanthrene removal from soil. J Mol Microbiol Biotechnol 21(3–4):120–129

    PubMed  CAS  Google Scholar 

  • Cruz-Morato C, Rodriguez-Rodriguez CE et al (2012) Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vincent T (ed) Emerging organic contaminants in sludges: analysis, fate and biological treatment. Springer, Berlin, pp 1–49

    Google Scholar 

  • Cullen D (2002) Molecular genetics of lignin-degrading fungi and their application in organopollutant degradation. In: Kempken F (ed) The Mycota, vol XI. Springer, Berlin, pp 71–90

    Google Scholar 

  • Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The Mycota III biochemistry and molecular biology. Springer, Berlin, pp 249–273

    Google Scholar 

  • Damon C, Lehembre F et al (2012) Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 7(1):e28967

    PubMed  CAS  Google Scholar 

  • Daniel G, Volc J et al (1994) Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60:2524–2532

    PubMed  CAS  Google Scholar 

  • Daniel G, Volc J et al (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73(19):6241–6253

    PubMed  CAS  Google Scholar 

  • Datta A, Bettermann A et al (1991) Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57:1453–1460

    PubMed  CAS  Google Scholar 

  • de Jong JF, Ohm RA et al (2010) Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 310(1):91–95

    PubMed  Google Scholar 

  • de Koker TH, Mozuch MD et al (2004) Pyranose 2-oxidase from Phanerochaete chrysosporium: isolation from solid substrate, protein purification, and characterization of gene structure and regulation. Appl Environ Microbiol 70:5794–5800

    PubMed  Google Scholar 

  • de Menezes A, Clipson N et al (2012) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14(9):2577–2588

    PubMed  Google Scholar 

  • Dietrich D, Crooks C (2009) Gene cloning and heterologous expression of pyranose 2-oxidase from the brown-rot fungus, Gloeophyllum trabeum. Biotechnol Lett 31(8):1223–1228

    PubMed  CAS  Google Scholar 

  • Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466

    PubMed  CAS  Google Scholar 

  • Doyle WA, Smith AT (1996) Expression of lignin peroxidase H8 in Escherichia coli: folding and activation of the recombinant enzyme with Ca2+ and haem. Biochem J 315(Pt 1):15–19

    PubMed  CAS  Google Scholar 

  • Dumonceaux TJ, Bartholomew KA et al (1998) Cloning and sequencing of a gene encoding cellobiose dehydrogenase from Trametes versicolor. Gene 210:211–219

    PubMed  CAS  Google Scholar 

  • Dumonceaux T, Bartholomew K et al (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb Technol 29:478–489

    CAS  Google Scholar 

  • Eastwood DC, Floudas D et al (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333(6043):762–765

    PubMed  CAS  Google Scholar 

  • Eggert C, Temp U et al (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    PubMed  CAS  Google Scholar 

  • Eibes GM, Lu-Chau TA et al (2009) Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 32(1):129–134

    PubMed  CAS  Google Scholar 

  • Eichlerova I, Homolka L (1999) Preparation and crossing of basidiospore-derived monokaryons–a useful tool for obtaining laccase and other ligninolytic enzyme higher- producing dikaryotic strains of Pleurotus ostreatus. Antonie Van Leeuwenhoek 75(4):321–327

    PubMed  CAS  Google Scholar 

  • Eichlerova-Volakova I, Homolka L (1997) Variability of ligninolytic enzyme activities in basidiospore isolates of the fungus Pleurotus ostreatus in comparison with that of protoplast-derived isolates. Folia Microbiol 42(6):583–588

    CAS  Google Scholar 

  • Eriksson K-EL, Blanchette RA et al (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Duenas FJ et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109(14):5458–5463

    PubMed  CAS  Google Scholar 

  • Floudas D, Binder M et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719

    PubMed  CAS  Google Scholar 

  • Ford CI, Walter M et al (2007a) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand trametes species in contaminated field soils. J Environ Qual 36(6):1749–1759

    PubMed  CAS  Google Scholar 

  • Ford CI, Walter M et al (2007b) Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. J Environ Qual 36(6):1599–1608

    PubMed  CAS  Google Scholar 

  • Fukushima Y, Kirk TK (1995) Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Appl Environ Microbiol 61:872–876

    PubMed  CAS  Google Scholar 

  • Gan S, Lau EV et al (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172(2–3):532–549

    PubMed  CAS  Google Scholar 

  • Garcia-Ruiz E, Gonzalez-Perez D et al (2012) Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase. Biochem J 441(1):487–498

    PubMed  CAS  Google Scholar 

  • Gaskell J, Stewart P et al (1994) Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biotechnology 12:1372–1375

    PubMed  CAS  Google Scholar 

  • Gasser G, Rona M et al (2010) Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Environ Sci Technol 44(10):3919–3925

    PubMed  CAS  Google Scholar 

  • George EJ, Neufield RD (1989) Degradation of fluorene in soil by fungus Phanerochaete chrysosporium. Biotechnol Bioengineer 33:1306–1310

    CAS  Google Scholar 

  • Gessner M, Raeder U (1994) A histone promoter for expression of a phleomycin-resistance gene in Phanerochaete chrysosporium. Gene 142:237–241

    PubMed  CAS  Google Scholar 

  • Gettemy JM, Li D et al (1997) Truncated-gene reporter system for studying the regulation of manganese peroxidase expression. Curr Genet 31(6):519–524

    PubMed  CAS  Google Scholar 

  • Gettemy JM, Ma B et al (1998) Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl Environ Microbiol 64(2):569–574

    PubMed  CAS  Google Scholar 

  • Giardina P, Palmieri G et al (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus1. Biochem J 341(Pt 3):655–663

    PubMed  CAS  Google Scholar 

  • Giardina P, Faraco V et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67(3):369–385

    PubMed  CAS  Google Scholar 

  • Glenn JK, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45(6):1741–1747

    PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA et al (1983) An extracellular H202-requiring enzyme preparation involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Comm 114:1077–1083

    PubMed  CAS  Google Scholar 

  • Glenn JK, Akileswaran L et al (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    PubMed  CAS  Google Scholar 

  • Godfrey BJ, Mayfield MB et al (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93(1):119–124

    PubMed  CAS  Google Scholar 

  • Godfrey B, Akileswaran L et al (1994) A reporter gene construct for studying the regulation of manganese peroxidase gene expression. Appl Environ Microbiol 60:1353–2358

    PubMed  CAS  Google Scholar 

  • Golan-Rozen N, Chefetz B et al (2011) Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Environ Sci Technol 45(16):6800–6805

    PubMed  CAS  Google Scholar 

  • Gold MH, Kuwahara M et al (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Archives Biochem Biophys 234:353–362

    CAS  Google Scholar 

  • Grassi E, Scodeller P et al (2011) Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Biodeterior Biodegradation 65:635–643

    CAS  Google Scholar 

  • Grigoriev IV, Nordberg H et al (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40(Database issue):D26–D32

    PubMed  CAS  Google Scholar 

  • Guo M, Lu F et al (2008) Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye. Biotechnol Lett 30(12):2091–2096

    PubMed  CAS  Google Scholar 

  • Gutierrez A, Babot ED et al (2011) Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Arch Biochem Biophys 514(1–2):33–43

    PubMed  CAS  Google Scholar 

  • Hallberg BM, Bergfors T et al (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure Fold Des 8(1):79–88

    PubMed  CAS  Google Scholar 

  • Hammel KE (1995a) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103(Suppl 5):41–43

    PubMed  CAS  Google Scholar 

  • Hammel KE (1995b) Organopollutant degradation by fungi. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemical. Wiley-Liss, New York, pp 331–346

    Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355

    PubMed  CAS  Google Scholar 

  • Hammel KE, Tardone PJ (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27:6563–6568

    CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B et al (1986a) Oxidation of polycyclic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    PubMed  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B et al (1986b) Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci USA 83:3808–3812

    Google Scholar 

  • Hammel KE, Gai WZ et al (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58(6):1832–1838

    PubMed  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    PubMed  CAS  Google Scholar 

  • Harris PV, Welner D et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316

    PubMed  CAS  Google Scholar 

  • Harvey PJ, Schoemaker HE et al (1985) Single-electron transfer processes and the reaction mechanism of enzymic degradation of lignin. FEBS Lett 183:13–16

    CAS  Google Scholar 

  • Hata T, Shintate H et al (2010) Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole. J Hazard Mater 181(1–3):1175–1178

    PubMed  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    PubMed  CAS  Google Scholar 

  • Heinfling A, Martinez MJ et al (1998a) Purification and characterization of peroxidases from the dye- decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165(1):43–50

    PubMed  CAS  Google Scholar 

  • Heinfling A, Martinez MJ et al (1998b) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64(8):2788–2793

    PubMed  CAS  Google Scholar 

  • Henriksson G, Johansson G et al (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78(2):93–113

    PubMed  CAS  Google Scholar 

  • Hernandez-Ortega A, Ferreira P et al (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93(4):1395–1410

    PubMed  CAS  Google Scholar 

  • Higham CW, Gordon-Smith D et al (1994) Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium. FEBS Lett 351(1):128–132

    PubMed  CAS  Google Scholar 

  • Higson FK (1991) Degradation of xenobiotics by white rot fungi. Rev Environ Contam Toxicol 122:111–152

    PubMed  CAS  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24(1):23–63

    CAS  Google Scholar 

  • Hirosue S, Tazaki M et al (2011) Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochem Biophys Res Commun 407(1):118–123

    PubMed  CAS  Google Scholar 

  • Hiscox J, Baldrian P et al (2010) Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet Biol 47(6):562–571

    PubMed  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S et al (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273(10):2308–2326

    PubMed  CAS  Google Scholar 

  • Hofrichter M, Ullrich R et al (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897

    PubMed  CAS  Google Scholar 

  • Holzbaur E, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155:626–633

    PubMed  CAS  Google Scholar 

  • Honda Y, Matsuyama T et al (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37(3):209–212

    PubMed  CAS  Google Scholar 

  • Hori C, Igarashi K et al (2011) Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 321(1):14–23

    PubMed  CAS  Google Scholar 

  • Hsu CA, Wen TN et al (2012) Biological degradation of anthroquinone and azo dyes by a novel laccase from Lentinus sp. Environ Sci Technol 46(9):5109–5117

    PubMed  CAS  Google Scholar 

  • Hundt K, Martin D et al (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66(9):4157–4160

    PubMed  CAS  Google Scholar 

  • Ichinose H, Wariishi H et al (1999) Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15(4):706–714

    PubMed  CAS  Google Scholar 

  • Irie T, Honda Y et al (2001) Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol 55(5):563–565

    PubMed  CAS  Google Scholar 

  • Janse BJH, Gaskell J et al (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64(9):3536–3538

    PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66(2):524–528

    PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A et al (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46(3):313–317

    PubMed  CAS  Google Scholar 

  • Johansson T, Nyman PO et al (2002) Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol 68(4):2077–2080

    PubMed  CAS  Google Scholar 

  • Johnson TM, Li JK (1991) Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 291:371–378

    PubMed  CAS  Google Scholar 

  • Johnson T, Pease E et al (1992) Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 296:660–666

    PubMed  CAS  Google Scholar 

  • Kang SI, Kang SY et al (2008) Identification of fungal metabolites of anticonvulsant drug carbamazepine. Appl Microbiol Biotechnol 79(4):663–669

    PubMed  CAS  Google Scholar 

  • Kapich AN, Jensen KA et al (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461(1–2):115–119

    PubMed  CAS  Google Scholar 

  • Karahanian E, Corsini G et al (1998) Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1443(1–2):65–74

    PubMed  CAS  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35(1):127–141

    PubMed  CAS  Google Scholar 

  • Kawai S, Umezawa T et al (1988) Degradation mechanisms of phenolic b-1 lignin substructure and model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99–110

    PubMed  CAS  Google Scholar 

  • Kelley RL, Reddy CA (1986) Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol 166(1):269–274

    PubMed  CAS  Google Scholar 

  • Kelley RL, Reddy CA (1988) Glucose oxidase of Phanerochaete chrysosporium. Methods Enzymol 161:307–316

    PubMed  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87(8):2936–2940

    PubMed  CAS  Google Scholar 

  • Kersten P, Cullen D (1993) Cloning and characterization of a cDNA encoding glyoxal oxidase, a peroxide-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA 90:7411–7413

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Tien M et al (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Witek C et al (1995) Phanerochaete chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization and heterologous expression of glx1 and glx2. J Bacteriol 177:6106–6110

    PubMed  CAS  Google Scholar 

  • Kim K, Leem Y et al (2002) Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration. FEMS Microbiol Lett 209(2):273–276

    PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    PubMed  CAS  Google Scholar 

  • Kojima Y, Tsukuda Y et al (1990) Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem 256:15224–15230

    Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    PubMed  CAS  Google Scholar 

  • Lamar R, Dietrich D (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl Environ Microbiol 56:3093–3100

    PubMed  CAS  Google Scholar 

  • Lamar RT, Glaser JA et al (1990a) Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium; mineralization, volatilization and depletion of PCP. Soil Biol Biochem 22(4):433–440

    CAS  Google Scholar 

  • Lamar RT, Larsen MJ et al (1990b) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol 56(11):3519–3526

    PubMed  CAS  Google Scholar 

  • Lamar RT, Davis MW et al (1994) Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungus Phanerochaete chrysosporium: a field demonstration. Soil Biol Biochem 26:1603–1611

    CAS  Google Scholar 

  • Lamar RT, Schoenike B et al (1995) Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl Environ Microbiol 61:2122–2126

    PubMed  CAS  Google Scholar 

  • Langston JA, Shaghasi T et al (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015

    PubMed  CAS  Google Scholar 

  • Larraya LM, Perez G et al (1999) Molecular karyotype of the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 65(8):3413–3417

    PubMed  CAS  Google Scholar 

  • Larraya LM, Perez G et al (2000) Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 66(12):5290–5300

    PubMed  CAS  Google Scholar 

  • Larraya LM, Idareta E et al (2002) Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 68(3):1109–1114

    PubMed  CAS  Google Scholar 

  • Larrondo LF, Lobos S et al (2001) Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium. Appl Environ Microbiol 67(5):2070–2075

    PubMed  CAS  Google Scholar 

  • Larrondo LF, Avila M et al (2003) Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology 149(Pt 5):1177–1182

    PubMed  CAS  Google Scholar 

  • Larrondo L, Vicuna R et al (2005) Phanerochaete chrysosporium genomics. In: Arora DK, Berka R (eds) Applied mycology and biotechnology, vol 5. Elsevier, Amsterdam, pp 315–352

    Google Scholar 

  • Leclercq M, Mathieu O et al (2009) Presence and fate of carbamazepine, oxcarbazepine, and seven of their metabolites at wastewater treatment plants. Arch Environ Contam Toxicol 56(3):408–415

    PubMed  CAS  Google Scholar 

  • Lestan D, Lamar RT (1996) Development of fungal inocula for bioaugmentation of contaminated soils. Appl Environ Microbiol 62(6):2045–2052

    PubMed  CAS  Google Scholar 

  • Li B, Nagalla SR et al (1996) Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol 62(4):1329–1335

    PubMed  CAS  Google Scholar 

  • Li B, Rotsaert FA et al (2000) Homologous expression of recombinant cellobiose dehydrogenase in Phanerochaete chrysosporium. Biochem Biophys Res Commun 270(1):141–146

    PubMed  CAS  Google Scholar 

  • Lienert J, Gudel K et al (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41(12):4471–4478

    PubMed  CAS  Google Scholar 

  • Liers C, Bobeth C et al (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85(6):1869–1879

    PubMed  CAS  Google Scholar 

  • Lobos S, Larrain J et al (1994) Isozymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology 140:2691–2698

    PubMed  CAS  Google Scholar 

  • Lu L, Zhao M et al (2009) Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. J Appl Microbiol 107(4):1149–1156

    PubMed  CAS  Google Scholar 

  • Lu XY, Zhang T et al (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89(5):1357–1371

    PubMed  CAS  Google Scholar 

  • Lundell TK, Makela MR et al (2010) Lignin-modifying enzymes in filamentous basdiomycetes-ecological, functional and phylogenetic review. J Basic Microbiol 50:4–20

    Google Scholar 

  • Ma B, Mayfield MB et al (2001) The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol 67(2):948–955

    PubMed  CAS  Google Scholar 

  • Ma B, Mayfield MB et al (2003) Homologous expression of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistance as a dominant selectable marker. Curr Genet 43(6):407–414

    PubMed  CAS  Google Scholar 

  • Ma B, Mayfield MB et al (2004) Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. Eukaryot Cell 3(3):579–588

    PubMed  CAS  Google Scholar 

  • Macdonald J, Master ER (2012) Time-dependent profiles of transcripts encoding lignocellulose-modifying enzymes of the white rot fungus Phanerochaete carnosa grown on multiple wood substrates. Appl Environ Microbiol 78(5):1596–1600

    PubMed  CAS  Google Scholar 

  • Macdonald J, Doering M et al (2011) Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol 77:3211–3218

    PubMed  CAS  Google Scholar 

  • MacDonald J, Suzuki H et al (2012) Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 94(2):339–351

    PubMed  CAS  Google Scholar 

  • Manavalan A, Adav SS et al (2011) iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium. J Proteomics 75(2):642–654

    PubMed  CAS  Google Scholar 

  • Mancilla RA, Canessa P et al (2010) Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora. Fungal Genet Biol 47(7):656–661

    PubMed  CAS  Google Scholar 

  • Marco-Urrea E, Perez-Trujillo M et al (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74(6):765–772

    PubMed  CAS  Google Scholar 

  • Marco-Urrea E, Radjenovic J et al (2010) Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Res 44(2):521–532

    PubMed  CAS  Google Scholar 

  • Martinez D, Larrondo LF et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    PubMed  CAS  Google Scholar 

  • Martinez D, Challacombe J et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106(6):1954–1959

    PubMed  CAS  Google Scholar 

  • Masapahy S, Lamb DC et al (1999) Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem Biophys Res Commun 266(2):326–329

    Google Scholar 

  • Mate D, Garcia-Burgos C et al (2010) Laboratory evolution of high-redox potential laccases. Chem Biol 17(9):1030–1041

    PubMed  CAS  Google Scholar 

  • Matityahu A, Hadar Y et al (2008) Gene silencing by RNA Interference in the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 74(17):5359–5365

    PubMed  CAS  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    PubMed  CAS  Google Scholar 

  • Miao XS, Yang JJ et al (2005) Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ Sci Technol 39(19):7469–7475

    PubMed  CAS  Google Scholar 

  • Miele A, Giardina P et al (2010) Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. J Appl Microbiol 108(3):998–1006

    PubMed  CAS  Google Scholar 

  • Miki Y, Morales M et al (2009) Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue. Protein Expr Purif 68(2):208–214

    PubMed  CAS  Google Scholar 

  • Mileski GJ, Bumpus JA et al (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54(12):2885–2889

    PubMed  CAS  Google Scholar 

  • Moen M, Hammel K (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    PubMed  CAS  Google Scholar 

  • Montiel-Gonzalez AM, Fernandez FJ et al (2009) Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway. Appl Microbiol Biotechnol 84(2):335–340

    PubMed  CAS  Google Scholar 

  • Moukha SM, Dumonceaux TJ et al (1999) Cloning and analysis of Pycnoporus cinnabarinus cellobiose dehydrogenase. Gene 234(1):23–33

    PubMed  CAS  Google Scholar 

  • Muheim A, Leisola MSA et al (1990) Aryl-alcohol-oxidase and lignin-peroxidase from the white-rot fungus Bjerkandera adusta comparison with Phanerochaete chrysosporium lignin-peroxidase for reactivity with veratryl alcohol, homoveratric acid and alpha-benzyl veratryl alcohol. J Biotechnol 13(2–3):159–167

    CAS  Google Scholar 

  • Nakazawa T, Ando Y et al (2011) Efficient gene targeting in DeltaCc.ku70 or DeltaCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48(10):939–946

    PubMed  CAS  Google Scholar 

  • Nie G, Reading NS et al (1998) Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Biochem Biophys Res Commun 249(1):146–150

    PubMed  CAS  Google Scholar 

  • Nishimura I, Okada K et al (1996) Cloning and expression of pyranose oxidase cDNA from Coriolus versicolor in E. coli. J Biotechnol 52:11–20

    PubMed  CAS  Google Scholar 

  • Ohm RA, de Jong JF et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963

    PubMed  CAS  Google Scholar 

  • Olson A, Aerts A et al (2012) Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194(4):1001–1013

    PubMed  Google Scholar 

  • Orth A, Royse D et al (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    PubMed  CAS  Google Scholar 

  • Orth A, Rzhetskaya M et al (1994) Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase genes. Gene 148:161–165

    PubMed  CAS  Google Scholar 

  • Palmieri G, Giardina P et al (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66(3):920–924

    PubMed  CAS  Google Scholar 

  • Paszczynski A, Huynh V-B et al (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750–765

    PubMed  CAS  Google Scholar 

  • Pease E, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174:3532–3540

    PubMed  CAS  Google Scholar 

  • Pease EA, Andrawis A et al (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from complementary DNA sequence. J Biol Chem 264(23):13531–13535

    Google Scholar 

  • Peng RH, Xiong AS et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955

    PubMed  CAS  Google Scholar 

  • Perie FH, Reddy GV et al (1998) Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch Biochem Biophys 353(2):349–355

    PubMed  CAS  Google Scholar 

  • Pickard MA, Roman R et al (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65(9):3805–3809

    PubMed  CAS  Google Scholar 

  • Pisanelli I, Kujawa M et al (2009) Pyranose 2-oxidase from Phanerochaete chrysosporium–expression in E. coli and biochemical characterization. J Biotechnol 142(2):97–106

    PubMed  CAS  Google Scholar 

  • Piscitelli A, Del Vecchio C et al (2011a) Fungal laccases: versatile tools for lignocellulose transformation. C R Biol 334(11):789–794

    PubMed  CAS  Google Scholar 

  • Piscitelli A, Giardina P et al (2011b) Induction and transcriptional regulation of laccases in fungi. Curr Genomics 12(2):104–112

    PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1–2):20–33

    PubMed  CAS  Google Scholar 

  • Pribnow D, Mayfield MB et al (1989) Characterization of a cDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Biol Chem 264(9):5036–5040

    PubMed  CAS  Google Scholar 

  • Quinlan RJ, Sweeney MD et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108(37):15079–15084

    PubMed  CAS  Google Scholar 

  • Raices M, Paifer E et al (1995) Cloning and characterization of a cDNA encoding a cellobiose dehydrogenase from the white rot fungus Phanerochaete chrysosporium. FEBS Lett 369(2–3):233–238

    PubMed  CAS  Google Scholar 

  • Randall TA, Reddy CA (1992) The nature of extra-chromosomal maintenance of transforming plasmids in the filamentous basidiomycete Phanerochaete chrysosporium. Curr Genet 21:255–260

    PubMed  CAS  Google Scholar 

  • Randall T, Rao TR et al (1989) Use of a shuttle vector for the transformation of the white-rot basidiomycete, Phanerochaete chrysosporium. Biochem Biophys Res Commun 161:720–725

    PubMed  CAS  Google Scholar 

  • Randall T, Reddy CA et al (1991) A novel extrachromosomally maintained transformation vector for the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 173(2):776–782

    PubMed  CAS  Google Scholar 

  • Ravalason H, Jan G et al (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80(4):719–733

    PubMed  CAS  Google Scholar 

  • Reddy GV, Gold MH (1999) A two-component tetrachlorohydroquinone reductive dehalogenase system from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 257(3):901–905

    PubMed  CAS  Google Scholar 

  • Reddy GV, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146(Pt 2):405–413

    PubMed  CAS  Google Scholar 

  • Reddy GV, Gelpke MD et al (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol 180(19):5159–5164

    PubMed  CAS  Google Scholar 

  • Reiser J, Walther I et al (1993) Methods to investigate the expression of lignin peroxidase genes by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59:2897–2903

    PubMed  CAS  Google Scholar 

  • Rodriguez-Rodriguez CE, Marco-Urrea E et al (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101(7):2259–2266

    PubMed  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Martinez MJ et al (1999) Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn(2+) and different aromatic substrates. Appl Environ Microbiol 65(10):4705–4707

    PubMed  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Morales M et al (2008) Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry 47(6):1685–1695

    PubMed  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Morales M et al (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    PubMed  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Fernandez E et al (2011) Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. C R Biol 334(11):795–805

    PubMed  CAS  Google Scholar 

  • Ruttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol 62(10):3890–3893

    PubMed  CAS  Google Scholar 

  • Ryu K, Hwang SY et al (2008a) Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. J Biotechnol 133(1):110–115

    PubMed  CAS  Google Scholar 

  • Ryu K, Kang JH et al (2008b) Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling. J Biotechnol 135(3):241–246

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Kitaura H et al (2010) Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium. Curr Genet 56(5):401–410

    PubMed  CAS  Google Scholar 

  • Salame TM, Yarden O et al (2010) Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol 3(1):93–106

    PubMed  CAS  Google Scholar 

  • Salame TM, Ziv C et al (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89(3):501–512

    PubMed  CAS  Google Scholar 

  • Salame TM, Knop D et al (2012) Predominance of a Versatile-Peroxidase-Encoding Gene, mnp4, as Demonstrated by Gene Replacement via a Gene Targeting System for Pleurotus ostreatus. Appl Environ Microbiol 78(15):5341–5352

    PubMed  CAS  Google Scholar 

  • Salas C, Lobos S et al (1995) Properties of laccase isoenzymes produced by the basidiomycete Ceriporiopsis subvermispora. Biotechnol Appl Biochem 21:323–333

    PubMed  CAS  Google Scholar 

  • Saloheimo M, Niku-Paavola M et al (1991) Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol 137:1537–1544

    PubMed  CAS  Google Scholar 

  • Sannia G, Limongi P et al (1991) Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta 1073:114–119

    PubMed  CAS  Google Scholar 

  • Sato S, Feltus FA et al (2009) The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak. Curr Genet 55(3):273–286

    PubMed  CAS  Google Scholar 

  • Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidase. J Basic Microbiol 38(1):51–59

    PubMed  CAS  Google Scholar 

  • Shimizu M, Yuda N et al (2005) Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 5(15):3919–3931

    PubMed  CAS  Google Scholar 

  • Shoemaker HE, Harvey PJ et al (1985) On the mechanism of enzymatic lignin breakdown. FEBS Lett 183:7–12

    Google Scholar 

  • Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41:807–878

    CAS  Google Scholar 

  • Smith M, Shnyreva A et al (1998) Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144(Pt 4):1063–1069

    PubMed  CAS  Google Scholar 

  • Sollewijn Gelpke MD, Mayfield-Gambill M et al (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65(4):1670–1674

    PubMed  CAS  Google Scholar 

  • Sollewijn Gelpke MD, Lee J et al (2002) Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171A, and F267L. Biochemistry 41(10):3498–3506

    PubMed  CAS  Google Scholar 

  • Stewart P, Cullen D (1999) Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol 181:3427–3432

    PubMed  CAS  Google Scholar 

  • Stewart P, Kersten P et al (1992) The lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation, and the identification of a second dimorphic chromosome. J Bacteriol 174:5036–5042

    PubMed  CAS  Google Scholar 

  • Stewart P, Whitwam RE et al (1996) Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 62(3):860–864

    PubMed  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56(1–2):69–80

    PubMed  CAS  Google Scholar 

  • Stuardo M, Vasquez M et al (2004) Molecular approach for analysis of model fungal genes encoding ligninolytic peroxidases in wood-decaying soil systems. Lett Appl Microbiol 38(1):43–49

    PubMed  CAS  Google Scholar 

  • Sucharitakul J, Wongnate T et al (2011) Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group. J Biol Chem 286(19):16900–16909

    PubMed  CAS  Google Scholar 

  • Sugano Y, Nakano R et al (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye- decolorizing peroxidase, DyP, of Geotrichum candidum. Appl Environ Microbiol 66(4):1754–1758

    PubMed  CAS  Google Scholar 

  • Sunagawa M, Magae Y (2002) Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment. FEMS Microbiol Lett 211(2):143–146

    PubMed  CAS  Google Scholar 

  • Syed K, Yadav JS (2012) P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol 38(4):339–363

    PubMed  CAS  Google Scholar 

  • Syed K, Doddapaneni H et al (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399(4):492–497

    PubMed  CAS  Google Scholar 

  • Syed K, Kattamuri C et al (2011a) Cytochrome b(5) reductase-cytochrome b(5) as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys 509(1):26–32

    PubMed  CAS  Google Scholar 

  • Syed K, Porollo A et al (2011b) A fungal P450 (CYP5136A3) capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129) and Leu(324). PLoS One 6(12):e28286

    PubMed  CAS  Google Scholar 

  • Tan TC, Pitsawong W et al (2010) H-bonding and positive charge at the N5/O4 locus are critical for covalent flavin attachment in Trametes pyranose 2-oxidase. J Mol Biol 402(3):578–594

    PubMed  CAS  Google Scholar 

  • Tan TC, Haltrich D et al (2011) Regioselective control of beta-d-glucose oxidation by pyranose 2-oxidase is intimately coupled to conformational degeneracy. J Mol Biol 409(4):588–600

    PubMed  CAS  Google Scholar 

  • Temp U, Zierold U et al (1999) Cloning and characterization of a second laccase gene from the lignin-degrading basidiomycete Pycnoporus cinnabarinus. Gene 236(1):169–177

    PubMed  CAS  Google Scholar 

  • Teunissen PJ, Sheng D et al (1998) 2-Chloro-1,4-dimethoxybenzene cation radical: formation and role in the lignin peroxidase oxidation of anisyl alcohol. Arch Biochem Biophys 360(2):233–238

    PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science (Washington, DC) 221:661–663

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Honda Y et al (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 126(4):431–439

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Honda Y et al (2008) Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2. Appl Environ Microbiol 74(9):2873–2881

    PubMed  CAS  Google Scholar 

  • Tuor U, Wariishii H et al (1992) Oxidation of phenolic b-aryl ether lignin model compounds by mangansese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an a-carbonyl model compound. Biochemistry 31:4986–4995

    PubMed  CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579(27):6247–6250

    PubMed  CAS  Google Scholar 

  • Valli K, Gold MH (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol 173(1):345–352

    PubMed  CAS  Google Scholar 

  • Valli K, Brock J et al (1992a) Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:221–228

    PubMed  CAS  Google Scholar 

  • Valli K, Wariichi H et al (1992b) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174:2131–2137

    PubMed  CAS  Google Scholar 

  • Vallim MA, Janse BJ et al (1998) Phanerochaete chrysosporium cellobiohydrolase and cellobiose dehydrogenase transcripts in wood. Appl Environ Microbiol 64(5):1924–1928

    PubMed  CAS  Google Scholar 

  • Van Aken B, Hofrichter M et al (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation 10(2):83–91

    PubMed  Google Scholar 

  • Vanden Wymelenberg A, Sabat G et al (2005) The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118(1):17–34

    CAS  Google Scholar 

  • Vanden Wymelenberg A, Minges P et al (2006a) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveals complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356

    PubMed  CAS  Google Scholar 

  • Vanden Wymelenberg A, Sabat G et al (2006b) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877

    PubMed  CAS  Google Scholar 

  • Vanden Wymelenberg A, Gaskell J et al (2009) Transcriptome and secretome analysis of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 75:4058–4068

    PubMed  CAS  Google Scholar 

  • Vanden Wymelenberg A, Gaskell J et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610

    PubMed  CAS  Google Scholar 

  • Vanden Wymelenberg A, Gaskell J et al (2011) Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol 77(13):4499–4507

    PubMed  CAS  Google Scholar 

  • Vazquez-Duhalt R, Westlake DWS et al (1994) Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Envrion Microbiol 60:459–466

    CAS  Google Scholar 

  • Wahleithmer JA, Xu F et al (1995) The identification and characterization of four laccase genes from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403

    Google Scholar 

  • Wang W, Wen X (2009) Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. J Environ Sci (China) 21(2):218–222

    CAS  Google Scholar 

  • Wang H, Lu F et al (2004) Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica. Biotechnol Lett 26(20):1569–1573

    PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K et al (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Comm 176:269–275

    PubMed  CAS  Google Scholar 

  • Watanabe T, Tsuda S et al (2010) Characterization of a Delta12-fatty acid desaturase gene from Ceriporiopsis subvermispora, a selective lignin-degrading fungus. Appl Microbiol Biotechnol 87(1):215–224

    PubMed  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I et al (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1–2):161–187

    PubMed  CAS  Google Scholar 

  • Westereng B, Ishida T et al (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6(11):e27807

    PubMed  CAS  Google Scholar 

  • Whittaker J (2002) Galactose oxidase. Adv Protein Chem 60:1–49

    PubMed  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ et al (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271(2):681–687

    PubMed  CAS  Google Scholar 

  • Whittaker MM, Kersten PJ et al (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 274(51):36226–36232

    PubMed  CAS  Google Scholar 

  • Wong KS, Huang Q et al (2012) Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. Bioresour Technol 104:157–164

    PubMed  CAS  Google Scholar 

  • Wongnate T, Sucharitakul J et al (2011) Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction. Chembiochem 12(17):2577–2586

    PubMed  CAS  Google Scholar 

  • Yanai K, Yonekura K et al (1996) The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker. Biosci Biotechnol Biochem 60(3):472–475

    PubMed  CAS  Google Scholar 

  • Yaver D, Golightly E (1996) Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 181:95–102

    PubMed  CAS  Google Scholar 

  • Yaver D, Xu F et al (1996) The purification, characterization, molecular cloning and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    PubMed  CAS  Google Scholar 

  • Yaver DS, Overjero MD et al (1999) Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Appl Environ Microbiol 65(11):4943–4948

    PubMed  CAS  Google Scholar 

  • Yoshida M, Ohira T et al (2001) Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 65(9):2050–2057

    PubMed  CAS  Google Scholar 

  • Zamocky M, Ludwig R et al (2006) Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7(3):255–280

    PubMed  CAS  Google Scholar 

  • Zamocky M, Schumann C et al (2008) Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum. Protein Expr Purif 59(2):258–265

    PubMed  CAS  Google Scholar 

  • Zapanta LS, Hattori T et al (1998) Cloning of Phanerochaete chrysosporium leu2 by complementation of bacterial auxotrophs and transformation of fungal auxotrophs. Appl Environ Microbiol 64(7):2624–2629

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitzhak Hadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hadar, Y., Cullen, D. (2013). 5 Organopollutant Degradation by Wood Decay Basidiomycetes. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_5

Download citation

Publish with us

Policies and ethics