Skip to main content

Electromagnetic Superconductivity of Vacuum Induced by Strong Magnetic Field

  • Chapter
Strongly Interacting Matter in Magnetic Fields

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 1016 Tesla. The magnetic field of the required strength (and even stronger) are expected to be generated for very short times in ultraperipheral collisions of lead ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark–antiquark pairs with quantum numbers of electrically charged ρ ± mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu–Jona-Lasinio model and an effective bosonic model based vector meson dominance (the ρ-meson electrodynamics). We discuss various properties of the new phase such as absence of Meissner effect, anisotropy of superconductivity, spatial inhomogeneity of ground state, emergence of a neutral superfluid component in the ground state and presence of new topological vortices in the quark–antiquark condensates.

This work was supported by Grant No. ANR-10-JCJC-0408 HYPERMAG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We briefly discuss an analogy between the magnetic-field-induced vacuum superconductivity and the Schwinger effect in Sect. 6.2.2.5, page 152.

  2. 2.

    Since the magnetic flux coming through the superconductor’s boundary is a conserved quantity, the superconductor expels it from the superconductor’s bulk into thin vortexlike structures.

  3. 3.

    Without loss of generality we consider the singly-charged bosons Φ instead of the usual doubly-charged Cooper pairs and we use a relativistic description of superconductivity.

  4. 4.

    A philosophically similar phenomenon, a color-flavor locking, is realized in a different context of the color superconductivity in a dense quark matter [73, 74].

  5. 5.

    Here we omit all terms with vanishing condensates as well as all kinetic terms.

  6. 6.

    We have estimated the critical field only approximately since the phenomenological values of the NJL parameters G S,V are not known precisely [76]. Moreover, subtleties of the renormalization of the effective dimensionally reduced (1+1)-dimensional theory embedded in 3+1 dimensions provide us with an additional uncertainty.

References

  1. I.A. Shovkovy, arXiv:1207.5081 [hep-ph]

  2. K.G. Klimenko, Z. Phys. C 54, 323 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)

    Article  ADS  Google Scholar 

  4. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Lett. B 349, 477 (1995)

    Article  ADS  Google Scholar 

  5. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)

    Article  ADS  Google Scholar 

  6. R. Gatto, M. Ruggieri, arXiv:1207.3190 [hep-ph]

  7. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)

    Article  ADS  Google Scholar 

  8. R. Gatto, M. Ruggieri, Phys. Rev. D 82, 054027 (2010)

    Article  ADS  Google Scholar 

  9. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010)

    Article  ADS  Google Scholar 

  10. E.S. Fraga, arXiv:1208.0917 [hep-ph]

  11. E.S. Fraga, A.J. Mizher, Phys. Rev. D 78, 025016 (2008)

    Article  ADS  Google Scholar 

  12. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phys. Rev. D 82, 105016 (2010)

    Article  ADS  Google Scholar 

  13. M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010)

    Article  ADS  Google Scholar 

  14. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, J. High Energy Phys. 1202, 044 (2012)

    Article  ADS  Google Scholar 

  15. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  16. W.-T. Deng, X.-G. Huang, Phys. Rev. C 85, 044907 (2012)

    Article  ADS  Google Scholar 

  17. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)

    Article  ADS  Google Scholar 

  18. A. Vilenkin, Phys. Rev. D 22, 3080 (1980)

    Article  ADS  Google Scholar 

  19. M.A. Metlitski, A.R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005)

    Article  ADS  Google Scholar 

  20. D. Kharzeev, Phys. Lett. B 633, 260 (2006)

    Article  ADS  Google Scholar 

  21. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  22. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  23. G. Basar, G.V. Dunne, arXiv:1207.4199 [hep-th]

  24. F. Preis, A. Rebhan, A. Schmitt, arXiv:1208.0536 [hep-ph]

  25. F. Preis, A. Rebhan, A. Schmitt, J. Phys. G 39, 054006 (2012)

    Article  ADS  Google Scholar 

  26. O. Bergman, J. Erdmenger, G. Lifschytz, arXiv:1207.5953 [hep-th]

  27. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010)

    Article  ADS  Google Scholar 

  28. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)

    Article  ADS  Google Scholar 

  29. M.N. Chernodub, PoS FACESQCD, 021 (2010)

    Google Scholar 

  30. M.N. Chernodub, J. Van Doorsselaere, H. Verschelde, Phys. Rev. D 85, 045002 (2012)

    Article  ADS  Google Scholar 

  31. J. Van Doorsselaere, arXiv:1201.0909 [hep-ph]

  32. D. Djukanovic, M.R. Schindler, J. Gegelia, S. Scherer, Phys. Rev. Lett. 95, 012001 (2005)

    Article  ADS  Google Scholar 

  33. D. Ebert, M.K. Volkov, Z. Phys. C 16, 205 (1983)

    Article  ADS  Google Scholar 

  34. D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)

    ADS  Google Scholar 

  35. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. M.N. Chernodub, Int. J. Mod. Phys. A 27, 1260003 (2012)

    Article  ADS  Google Scholar 

  37. I.I. Smolyaninov, Phys. Rev. Lett. 107, 253903 (2011)

    Article  ADS  Google Scholar 

  38. M. Rasolt, Phys. Rev. Lett. 58, 1482 (1987)

    Article  ADS  Google Scholar 

  39. Z. Tešanović, M. Rasolt, L. Xing, Phys. Rev. Lett. 63, 2425 (1989)

    Article  ADS  Google Scholar 

  40. M. Rasolt, Z. Tešanović, Rev. Mod. Phys. 64, 709 (1992)

    Article  ADS  Google Scholar 

  41. F. Lévy, I. Sheikin, B. Grenier, A.D. Huxley, Science 309, 1343 (2005)

    Article  ADS  Google Scholar 

  42. D. Aoki et al., J. Phys. Soc. Jpn. 78, 113709 (2009)

    Article  Google Scholar 

  43. D. Aoki et al., J. Phys. Soc. Jpn. 80, SA008 (2011). arXiv:1012.1987

    Article  Google Scholar 

  44. A. Samsonov, J. High Energy Phys. 0312, 061 (2003)

    Article  ADS  Google Scholar 

  45. V.V. Braguta, A.I. Onishchenko, Phys. Rev. D 70, 033001 (2004)

    Article  ADS  Google Scholar 

  46. T.M. Aliev, M. Savci, Phys. Rev. D 70, 094007 (2004)

    Article  ADS  Google Scholar 

  47. M.S. Bhagwat, P. Maris, Phys. Rev. C 77, 025203 (2008)

    Article  ADS  Google Scholar 

  48. J.N. Hedditch et al., Phys. Rev. D 75, 094504 (2007)

    Article  ADS  Google Scholar 

  49. F.X. Lee, S. Moerschbacher, W. Wilcox, Phys. Rev. D 78, 094502 (2008)

    Article  ADS  Google Scholar 

  50. N.K. Nielsen, P. Olesen, Nucl. Phys. B 144, 376 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  51. J. Ambjorn, P. Olesen, Nucl. Phys. B 315, 606 (1989)

    Article  ADS  Google Scholar 

  52. J. Ambjorn, P. Olesen, Int. J. Mod. Phys. A 5, 4525 (1990)

    Article  ADS  Google Scholar 

  53. J. Ambjorn, P. Olesen, Phys. Lett. B 218, 67 (1989)

    Article  ADS  Google Scholar 

  54. E.V. Gorbar, M. Hashimoto, V.A. Miransky, Phys. Rev. D 75, 085012 (2007)

    Article  ADS  Google Scholar 

  55. V.A. Miransky, Prog. Theor. Phys. Suppl. 168, 405 (2007)

    Article  ADS  Google Scholar 

  56. M. Ammon, J. Erdmenger, M. Kaminski, P. Kerner, Phys. Lett. B 680, 516 (2009)

    Article  ADS  Google Scholar 

  57. M. Ammon, J. Erdmenger, M. Kaminski, P. Kerner, J. High Energy Phys. 0910, 067 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  58. D.N. Voskresensky, Phys. Lett. B 392, 262 (1997)

    Article  ADS  Google Scholar 

  59. O. Aharony, K. Peeters, J. Sonnenschein, M. Zamaklar, J. High Energy Phys. 0802, 071 (2008). arXiv:0709.3948 [hep-th]

    Article  ADS  Google Scholar 

  60. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  61. A.A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988)

    Google Scholar 

  62. L.P. Gor’kov, Sov. Phys. JETP 9, 1364 (1959)

    MathSciNet  MATH  Google Scholar 

  63. V.L. Ginzburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  64. J.J. Sakurai, Ann. Phys. 11, 1 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  65. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  66. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  67. M. Ammon, J. Erdmenger, P. Kerner, M. Strydom, Phys. Lett. B 706, 94 (2011)

    Article  ADS  Google Scholar 

  68. N. Callebaut, D. Dudal, H. Verschelde, arXiv:1105.2217

  69. V.V. Braguta et al., Phys. Lett. B 718, 667 (2012). arXiv:1104.3767

    Article  ADS  Google Scholar 

  70. A.A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  71. B. Rosenstein, D. Li, Rev. Mod. Phys. 82, 109 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. M.N. Chernodub, J. Van Doorsselaere, H. Verschelde, Proc. Sci. QNP2012, 109 (2012). arXiv:1206.2845 [hep-ph]

    Google Scholar 

  73. M.G. Alford, Annu. Rev. Nucl. Part. Sci. 51, 131 (2001)

    Article  ADS  Google Scholar 

  74. K. Rajagopal, F. Wilczek, hep-ph/0011333

  75. D.J. Gross, A. Neveu, Phys. Rev. D 10, 3235 (1974)

    Article  ADS  Google Scholar 

  76. V. Bernard, A.H. Blin, B. Hiller, Y.P. Ivanov, A.A. Osipov, U.G. Meissner, Ann. Phys. 249, 499 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Chernodub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chernodub, M.N. (2013). Electromagnetic Superconductivity of Vacuum Induced by Strong Magnetic Field. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_6

Download citation

Publish with us

Policies and ethics