Skip to main content

Exploiting Features – Locally Interleaved Sequential Alignment for Object Detection

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

  • 8370 Accesses

Abstract

We exploit image features multiple times in order to make sequential decision process faster and better performing. In the decision process features providing knowledge about the object presence or absence in a given detection window are successively evaluated. We show that these features also provide information about object position within the evaluated window. The classification process is sequentially interleaved with estimating the correct position. The position estimate is used for steering the features yet to be evaluated. This locally interleaved sequential alignment (LISA) allows to run an object detector on sparser grid which speeds up the process. The position alignment is jointly learned with the detector. We achieve a better detection rate since the method allows for training the detector on perfectly aligned image samples. For estimation of the alignment we propose a learnable regressor that approximates a non-linear regression function and runs in negligible time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  2. Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view face detection. In: ICCV, pp. 446–453 (2005)

    Google Scholar 

  3. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1627–1645 (2010)

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 1–8 (2005)

    Google Scholar 

  5. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV, pp. 606–613 (2009)

    Google Scholar 

  6. Harzallah, H., Jurie, F., Schmid, C.: Combining efficient object localization and image classification. In: ICCV, pp. 237–244 (2009)

    Google Scholar 

  7. Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: CVPR, vol. 2, pp. 1491–1498 (2006)

    Google Scholar 

  8. Lampert, C.H., Blaschko, M.B., Hoffmann, T.: Efficient subwindow search: A branch and bound framework for object localization. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2129–2142 (2009)

    Article  Google Scholar 

  9. Kokkinos, I.: Rapid deformable object detection using dual-tree branch-and-bound. In: Advances in Neural Information Processing Systems (NIPS), pp. 2681–2689 (2011)

    Google Scholar 

  10. Šochman, J., Matas, J.: Waldboost - learning for time constrained sequential detection. In: CVPR, pp. 150–157 (2005)

    Google Scholar 

  11. Ali, K., Fleuret, F., Hasler, D., Fua, P.: A real-time deformable detector. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 225–239 (2012)

    Article  Google Scholar 

  12. Zimmermann, K., Matas, J., Svoboda, T.: Tracking by an optimal sequence of linear predictors. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 677–692 (2009)

    Article  Google Scholar 

  13. Dollar, P., Welinder, P., Perona, P.: Cascaded pose regression. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1078–1085 (2010)

    Google Scholar 

  14. Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: CVPR, vol. 2, pp. 236–243 (2005)

    Google Scholar 

  15. Penrose, R.: A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 51, 406–413 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28, 2000 (1998)

    MathSciNet  Google Scholar 

  17. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimmermann, K., Hurych, D., Svoboda, T. (2013). Exploiting Features – Locally Interleaved Sequential Alignment for Object Detection. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics