Skip to main content

Invariant Surface-Based Shape Descriptor for Dynamic Surface Encoding

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

This paper presents a novel approach to represent spatio-temporal visual information. We introduce a surface-based shape model whose structure is invariant to surface variations over time to describe 3D dynamic surfaces (e.g., obtained from multiview video capture). The descriptor is defined as a graph lying on object surfaces and anchored to invariant local features (e.g., extremal points). Geodesic-consistency-based priors are used as cues within a probabilistic framework to maintain the graph invariant, even though the surfaces undergo non-rigid deformations. Our contribution brings to 3D geometric data a temporally invariant structure that relies only on intrinsic surface properties, and is independent of surface parameterization (i.e., surface mesh connectivity). The proposed descriptor can therefore be used for efficient dynamic surface encoding, through transformation into 2D (geometry) images, as its structure can provide an invariant representation for 3D mesh models. Various experiments on challenging publicly available datasets are performed to assess invariant property and performance of the descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forsyth, D.A., Mundy, J.L., Zisserman, A., Coelho, C., Heller, A., Rothwell, C.: Invariant descriptors for 3d object recognition and pose. IEEE PAMI 13 (1991)

    Google Scholar 

  2. Mundy, J., Zisserman, A.: Geometric invariance in computer vision. MIT Press (1992)

    Google Scholar 

  3. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. IJCV 66, 231–259 (2006)

    Article  Google Scholar 

  4. Matsuyama, T., Wu, X., Takai, T., Nobuhara, S.: Real-time 3d shape reconstruction, dynamic 3d mesh deformation, and high fidelity visualization for 3d video. CVIU 96, 393–434 (2004)

    Google Scholar 

  5. Allard, J., Ménier, C., Raffin, B., Boyer, E., Faure, F.: Grimage: Markerless 3d interactions. ACM SIGGRAPH - Emerging Technologies (2007)

    Google Scholar 

  6. Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE CGA (2007)

    Google Scholar 

  7. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. ACM Trans. Graphics 27 (2008)

    Google Scholar 

  8. Starck, J., Hilton, A.: Spherical matching for temporal correspondence of non-rigid surfaces. In: IEEE ICCV (2005)

    Google Scholar 

  9. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. VCG, 902–913 (2007)

    Google Scholar 

  10. Vlasic, D., Baran, I., Matusik, W., Popovic, J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graphics 27 (2008)

    Google Scholar 

  11. Cagniart, C., Boyer, E., Ilic, S.: Probabilistic Deformable Surface Tracking from Multiple Videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 326–339. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Gu, X., Gortler, S., Hoppe, H.: Geometry images. ACM SIGGRAPH (2002)

    Google Scholar 

  13. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE CVPR (2006)

    Google Scholar 

  14. Alliez, P., Gotsman, C.: Recent advances in compression of 3d meshes. In: Advances in Multiresolution for Geometric Modelling. Springer (2005)

    Google Scholar 

  15. Alexa, M., Müllen, W.: Representing animations by principal components. Computer Graphics Forum 19 (2000)

    Google Scholar 

  16. Briceno, H., Sandler, P., McMillian, L., Gortler, S., Hoppe, H.: Geometry videos: A new representation for 3d animations. In: Eurographics/SIGGRAPH Symp. Computer Animation, pp. 136–146 (2003)

    Google Scholar 

  17. Karni, Z., Gotsman, C.: Compression of soft-body animation sequence. Computers & Graphics 28, 25–34 (2004)

    Article  Google Scholar 

  18. Mamou, K., Zaharia, T., Preteux, F., Stefanoski, N., Ostermann, J.: Frame-based compression of animated meshes in mpeg-4. In: IEEE ICME (2008)

    Google Scholar 

  19. Blum, H.: A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form (1967)

    Google Scholar 

  20. Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve skeletons of 3d objects. The Visual Computer 21, 945–955 (2005)

    Article  Google Scholar 

  21. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. ACM SIGGRAPH, 203–212 (2001)

    Google Scholar 

  22. Carranza, J., Theobalt, C., Magnor, M., Seidel, H.-P.: Free-viewpoint video of human actors. ACM Trans. Graphics 22, 569–577 (2003)

    Article  Google Scholar 

  23. Palagyi, K., Kuba, A.: A parallel 3d 12-subiteration thinning algorithm. Graph. Models and Image Proc. 61, 199–221 (1999)

    Article  Google Scholar 

  24. Baran, I., Popovic, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graphics 26, 27 (2007)

    Article  Google Scholar 

  25. Tung, T., Matsuyama, T.: Topology dictionary for 3d video understanding. IEEE Trans. PAMI 34, 1645–1657 (2012)

    Article  Google Scholar 

  26. Habe, H., Katsura, Y., Matsuyama, T.: Skin-off: Representation and compression scheme for 3d video. In: Picture Coding Symposium (2004)

    Google Scholar 

  27. Saboret, L., Alliez, P., Lévy, B.: Planar parameterization of triangulated surface meshes. In: CGAL Reference Manual. CGAL Editorial Board, 4.0 edition (2012)

    Google Scholar 

  28. Mortara, M., Patanè, G.: Affine-invariant skeleton of 3d shapes. Shape Modeling International (2002)

    Google Scholar 

  29. Morse, M.: The calculus of variations in the large. American Mathematical Society, Colloquium Publication 18, New York (1934)

    Google Scholar 

  30. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of reeb graphs: Simplicity and speed. ACM Trans. Graphics 26 (2007)

    Google Scholar 

  31. Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V.: Time-varying reeb graphs for continuous space-time data. In: Symp. Computational Geometry (2004)

    Google Scholar 

  32. Klein, T., Ertl, T.: Scale-space tracking of critical points in 3d vector fields. In: Proc. Topology-Based Methods in Visualization (2005)

    Google Scholar 

  33. Tung, T., Schmitt, F.: The augmented multiresolution reeb graph approach for content-based retrieval of 3d shapes (code on webpage). Int’l J. Shape Modeling 11, 91–120 (2005)

    Article  Google Scholar 

  34. Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans. Graphics 17, 84–115 (1998)

    Article  Google Scholar 

  35. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete & Computational Geometry 31, 37–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Floater, M.: Parametrization and smooth approximation of surface triangulations. CADG 14, 231–250 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5, 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 167–174 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tung, T., Matsuyama, T. (2013). Invariant Surface-Based Shape Descriptor for Dynamic Surface Encoding. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics