Skip to main content

Dynamic Surface Control of Hypersonic Aircraft with Parameter Estimation

  • Conference paper
  • First Online:
Foundations and Applications of Intelligent Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 213))

  • 2077 Accesses

Abstract

This paper investigates the adaptive controller for the longitudinal dynamics of a generic hypersonic aircraft. The control-oriented model is adopted for design. The subsystem is transformed into the linearly parameterized form. Based on the parameter projection estimation, the dynamic inverse control is proposed via back-stepping. The dynamic surface method is employed to provide the derivative information of the virtual control. The proposed methodology addresses the issue of controller design with respect to parametric model uncertainty. Simulation results show that the proposed approach achieves good tracking performance in the presence of uncertain parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt D (1992) Dynamics and control of hypersonic aeropropulsive/aeroelastic vehicles. AIAA Paper, pp 1992–4326

    Google Scholar 

  2. Schmidt D (1997) Optimum mission performance and multivariable flight guidance for airbreathing launch vehicles. J Guidance Control Dyn 20(6):1157–1164.

    Google Scholar 

  3. Gibson T, Crespo L, Annaswamy A (2009) Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. American Control Conference, Missouri, USA, June, pp 3178–3183

    Google Scholar 

  4. Xu H, Mirmirani M, Ioannou P (2004) Adaptive sliding mode control design for a hypersonic flight vehicle. J Guidance Control Dyn 27(5):829–838

    Article  Google Scholar 

  5. Shaughnessy J, Pinckney S, McMinn J, Cruz C, Kelley M (1990) Hypersonic vehicle simulation model: Winged-Cone configuration. NASA TM 102610, Nov 1990

    Google Scholar 

  6. Wang Q, Stengel R (2000) Robust nonlinear control of a hypersonic aircraft. J Guidance Control Dyn 23(4):577–585

    Google Scholar 

  7. Gao DX, Sun ZQ (2011) Fuzzy tracking control design for hypersonic vehicles via TS model. Sci China Inf Sci 54(3):521–528

    Article  MathSciNet  MATH  Google Scholar 

  8. Kokotovic P (1991) The joy of feedback: nonlinear and adaptive: 1991 bode prize lecture. IEEE Control Syst Mag 12:7–17

    Article  Google Scholar 

  9. Xu B, Sun F, Yang C, Gao D, Ren J (2011) Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int J Control 84(9):1543–1552

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu B, Sun F, Liu H, Ren J (2012) Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory Appl 6(4):487–497

    Article  MathSciNet  Google Scholar 

  11. Xu B, Wang D, Sun F, Shi Z (2012) Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn 70(1):269–278

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiorentini L, Serrani A, Bolender M, Doman D (2008) Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model. American Control Conference, Seattle, USA, pp 3458–3463

    Google Scholar 

  13. Williams T, Bolender M, Doman D, Morataya O (2006) An aerothermal flexible mode analysis of a hypersonic vehicle. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, AIAA Paper, pp 2006–6647.

    Google Scholar 

  14. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Networks 16(1):195–202

    Article  Google Scholar 

  15. Parker J, Serrani A, Yurkovich S, Bolender M, Doman D (2007) Control-oriented modeling of an air-breathing hypersonic vehicle. J Guidance Control Dyn 30(3):856–869

    Article  Google Scholar 

  16. Xu B, Gao D, Wang S (2011) Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci 54(3):511–520

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu B, Huang X, Wang D, Sun F. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J Control. doi:10.1002/asjc.679

Download references

Acknowledgments

This work was supported by the DSO National Laboratories of Singapore through a Strategic Project Grant (Project No: DSOCL10004), National Science Foundation of China (Grant No:61134004), NWPU Basic Research Funding (Grant No: JC20120236), and Deutsche Forschungsgemeinschaft (DFG) Grant No. WU 744/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, B., Sun, F., Wang, S., Wu, H. (2014). Dynamic Surface Control of Hypersonic Aircraft with Parameter Estimation. In: Sun, F., Li, T., Li, H. (eds) Foundations and Applications of Intelligent Systems. Advances in Intelligent Systems and Computing, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37829-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37829-4_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37828-7

  • Online ISBN: 978-3-642-37829-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics