Skip to main content

Definition of a Discrete Color Monogenic Wavelet Transform

  • Chapter
Advances in Heuristic Signal Processing and Applications

Abstract

In this chapter, we propose to review different approaches for the introduction of a color monogenic wavelet transform. Monogenic wavelets offer a geometric representation of grayscale images through an AM/FM model allowing invariance of coefficients to translations and rotations. The underlying concept of a local phase includes a fine contour analysis into a coherent unified framework. Wavelet based color image processing schemes have mostly been made by using a grayscale tool separately on color channels. In this chapter, we propose to discuss definitions that consider a color (vector) image right at the beginning of the mathematical definition. After a general description of the background of monogenic concept, we review a first approach built from the grayscale monogenic wavelets together with a color extension of the monogenic signal based on geometric algebra. Then, starting from a link with structure tensors, we discuss an alternative nontrivial extension of the monogenic framework to vector-valued signals. The crucial point is that our color monogenic wavelet transform is non-marginal and it inherits the coherent geometric analysis from the monogenic framework. Finally, we address the numerical aspect by introducing an innovative scheme that uses a discrete Radon transform based on discrete geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, E.: Modélisation analytique discrète d’objets géométriques. Habilitation, Université de Poitiers (2000)

    Google Scholar 

  2. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graph. Models Image Process. 59(5), 302–309 (1997)

    Article  Google Scholar 

  3. Bayro-Corrochano, E., De la Torre Gomora, M.A.: Image processing using the quaternion wavelet transform. In: Proc. CIARP’, Puebla, Mexico, pp. 612–620 (2004)

    Google Scholar 

  4. Bijaoui, A., Starck, J., Murtagh, F.: Restauration des images multi-échelles par l’algorithme à trous. Trait. Signal 11, 232–243 (1994)

    Google Scholar 

  5. Brackx, F., Knock, B.D., Schepper, H.D.: On generalized Hilbert transforms and their interaction with the Radon transform in Clifford analysis. Math. Methods Appl. Sci. 30, 1071–1092 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. BĂ¼low, T.: Hypercomplex spectral signal representation for the processing and analysis of images. Thesis (1999)

    Google Scholar 

  7. Carré, P., Andres, E.: Discrete analytical ridgelet transform. Signal Process. 84, 2165–2173 (2004)

    Article  MATH  Google Scholar 

  8. Chan, W.L., Choi, H.H., Baraniuk, R.G.: Coherent multiscale image processing using dual-tree quaternion wavelets. IEEE Trans. Image Process. 17(7), 1069–1082 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cohen, A.: Ondelettes et Traitement Numérique du Signal. Masson, Paris (1992)

    MATH  Google Scholar 

  10. Demarcq, G., Mascarilla, L., Courtellemont, P.: The color monogenic signal: a new framework for color image processing. In: Proc. IEEE Int’l Conf. on Image Processing (2009)

    Google Scholar 

  11. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33(1), 116–125 (1986). doi:10.1016/0734-189X(86)90223-9

    Article  MATH  Google Scholar 

  12. Felsberg, M.: Low-level image processing with the structure multivector. Thesis (2002)

    Google Scholar 

  13. Felsberg, M., Köthe, U.: Get: the connection between monogenic scale-space and Gaussian derivatives. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Proc. Scale-Space. LNCS, vol. 3459, pp. 192–203. Springer, Berlin (2005)

    Google Scholar 

  14. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  15. Hahn, S.L.: Multidimensional complex signals with single-orthant spectra. Proc. IEEE 80(8), 1287–1300 (1992)

    Article  Google Scholar 

  16. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Combes, J., Grossmann, A., Tchamitchian, P. (eds.) Wavelet, Time–Frequency Methods and Phase Space, pp. 289–297. Springer, Berlin (1989)

    Google Scholar 

  17. Jähne, B.: Digital Image Processing, 6th edn. Springer, Berlin (2005)

    Google Scholar 

  18. Köthe, U., Felsberg, M.: Riesz-transforms versus derivatives: on the relationship between the boundary tensor and the energy tensor. In: Kimmel, J.W.R., Sochen, N. (eds.) Proc. Scale-Space. LNCS, vol. 3459, pp. 179–191. Springer, Berlin (2005)

    Google Scholar 

  19. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet transform. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  20. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Habilitation, Université Louis Pasteur de Strasbourg (1991)

    Google Scholar 

  21. Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586 (1996)

    Article  Google Scholar 

  22. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform—a coherent framework for multiscale signal and image processing. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  23. Shensa, M.: Wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992)

    Article  MATH  Google Scholar 

  24. Soulard, R., Carré, P.: Color extension of monogenic wavelets with geometric algebra: application to color image denoising. In: ICCA9 Proceedings, Weimar, Allemagne, p. 179 (2011). 10 pages

    Google Scholar 

  25. Soulard, R., Carré, P.: Color monogenic wavelets for image analysis. In: Proc. IEEE Int’l Conf. on Image Processing, Brussels, Belgium, pp. 277–280 (2011)

    Google Scholar 

  26. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)

    Article  Google Scholar 

  27. Unser, M., Sage, D., Van de Ville, D.: Multiresolution monogenic signal analysis using the Riesz–Laplace wavelet transform. IEEE Trans. Image Process. 18(11), 2402–2418 (2009)

    Article  MathSciNet  Google Scholar 

  28. Unser, M., Van de Ville, D.: The pairing of a wavelet basis with a mildly redundant analysis via subband regression. IEEE Trans. Image Process. 17(11), 1–13 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Soulard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soulard, R., Carré, P., Fernandez-Maloigne, C. (2013). Definition of a Discrete Color Monogenic Wavelet Transform. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37880-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37879-9

  • Online ISBN: 978-3-642-37880-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics