Skip to main content

Plant Bioactive Metabolites for Cereal Protection Against Fungal Pathogens

  • Chapter
  • First Online:
Antifungal Metabolites from Plants

Abstract

The yield, the quality, and the nutritional safety of cereals can be seriously affected by the development, both in the field and during storage, of fungi that can produce several classes of mycotoxins, characterized by strong negative effects on the human and animal’s health. For the diseases control, modern strategies include the development of cereal resistant varieties obtained through classical or innovative breeding strategies, together with the application of biological agents and new “green” chemicals as pesticide. To this purpose, Medicinal and Aromatic Plants are a source of natural products useful in “environmental-friendly” organic and conventional farming. This chapter reviews the wide range of essential oils (EOs) and natural compounds that have been demonstrated to have fungicide and fungistatic effects against mycotoxigenic fungi of cereals. It also addresses their mechanisms of action against fungi and their impact on plants tissues both at cellular and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed A, Randhawa MA, Yusuf MJ, Khalid N (2011) Effect of processing on pesticide residues in food crops—a review. J Agric Res 49(3):379–390

    Google Scholar 

  • Ait-Ouazzou A, Cherrat L, Somolinos M, Lorán S, Rota C, Pagán R (2011a) The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes. Inn Food Sci Emerging Technol 12:320–329

    Article  CAS  Google Scholar 

  • Ait-Ouazzou A, Lorán S, Rota C, Bakalli M, Laglaoui A, Herrera A, Pagán R, Conchello P (2011b) Antimicrobial activity of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis essential oils from Morocco. J Sci Food Agric 91:2643–2651

    Article  PubMed  CAS  Google Scholar 

  • Aldred D, Cairns-Fuller V, Magan N (2008) Environmental factors affect efficacy of some essential oils and resveratrol to control growth and ochratoxin A production by Penicillium verrucosum and Aspergillus westerdijkiae on wheat grain. J Stored Prod Res 44:341–346

    Article  CAS  Google Scholar 

  • Al-Reza SM, Rahman A, Ahmed Y, Kang SC (2010) Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pesticide Biochem Physiol 96:86–92

    Article  CAS  Google Scholar 

  • Atanda OO, Akpan I, Oluwafemi F (2007) The potential of some spice essential oils in the control of A. parasiticus CFR 223 and aflatoxin production. Food Control 18:601–607

    Article  CAS  Google Scholar 

  • Bajpai VK, Kang SC (2010) Antifungal activity of leaf essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. J Am Oil Chem Soc 87:327–336

    Article  CAS  Google Scholar 

  • Bankole SA (1997) Effect of essential oil from two Nigerian medicinal plants (Azadirachta indica and Morinda lucida) on growth and aflatoxin B1 production in maize grain by a toxigenic Aspergillus flavus. LAM 24:190–192

    CAS  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phyt 127(4):617–633

    Article  CAS  Google Scholar 

  • Bi X, Guo N, Jin J, Liu, Feng H, Shi J, Xiang H, Wu X, Dong J, Hu H, Yan S, Yu C, Wang X, Deng X, Yu L (2009) The global gene expression profile of the model fungus Saccharomyces cerevisiae induced by thymol. J Appl Microbiol 108:712–722

    Article  PubMed  Google Scholar 

  • Bluma R, Etcheverry M (2008) Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Food Microbiol 25:324–334

    Article  PubMed  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  PubMed  CAS  Google Scholar 

  • Cardenas-Ortega NC, Zavala-Sanchez MA, Aguirre-Rivera JR, Perez-Gonzalez C, Perez-Gutierrez S (2005) Chemical composition and antifungal activity of essential oil of Chrysactinia mexicana gray. J Agric Food Chem 53:4347–4349

    Article  PubMed  CAS  Google Scholar 

  • Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62

    Article  PubMed  CAS  Google Scholar 

  • Cawood ME, Pretorius JC, van der Westhuizen AJ, Pretorius ZA (2010) Disease development and PR-protein activity in wheat (Triticum aestivum) seedlings treated with plant extracts prior to leaf rust (Puccinia triticina) infection. Crop Prot 29:1311–1319

    Article  Google Scholar 

  • Chaimovitsh D, Abu-Abied M, Belausov E, Rubin B, Dudai N, Sadot E (2010) Microtubules are an intracellular target of the plant terpene citral. The Plant J 61:399–408

    Article  CAS  Google Scholar 

  • Chaimovitsh D, Rogovoy O, Altshuler O, Belausov E, Abu-Abied M, Rubin B, Sadot E, Dudai N (2011) The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant Biol. doi:10.1111/j.1438-8677.2011.00511.x

    PubMed  Google Scholar 

  • Chulze SN (2010) Strategies to reduce mycotoxin levels in maize during storage: a review. Food Add Contam 27(5):651-657

    Google Scholar 

  • Dan Y, Liu H-Y, Gao W-W, Chen S-L (2010) Activities of essential oils from Asarum hetrotropoides var. mandshuricum against five phytopathogens. Crop Prot 29:295–299

    Article  CAS  Google Scholar 

  • Dwivedi SK, Dubey NK (1993) Potential use of the essential oil of Trachyspermum ammi against seed-borne fungi of Guar (Cyamopsis tetragonoloba L. (Taub.)). Mycopathologia 121:101–104

    Article  CAS  Google Scholar 

  • Fandohan P, Gbenou JD, Gnonlonfin B, Hell K, Marasas WFO, Wingfield MJ (2004) Effect of essential oils on the growth of Fusarium verticillioides and fumonisin contamination in corn. J Agri Food Chem 52:6824–6829

    Article  CAS  Google Scholar 

  • Giannitti F, Diab SS, Pacin AM, Barrandeguy M, Larrere C, Ortega J, Uzal FA (2011) Equine leukoencephalomalacia (ELEM) due to fumonisins B1 and B2 in Argentina. Pesquisa Veterinária Brasileira 31(5):407–412

    Google Scholar 

  • Gibriel YAY, Hamza AS, Gibriel AY, Mohsen SM (2011) In vivo effect of mint (Mentha viridis) essential oil on growth and aflatoxin production by Aspergillus flavus isolated from stored corn. J Food Saf 3:445–451

    Article  Google Scholar 

  • Harrison LR, Colvin BM, Greene JT, Newman LE, Cole JR (1990) Pulmonary edema and hydrothorax in swine produced by fumonisin B1 a toxic metabolite of Fusarium moniliforme. J Vet Diagn Inv 2:217–221

    Article  CAS  Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10(2):197–204

    Article  CAS  Google Scholar 

  • Kapros T, McDaniel SC (2009) Cytotoxicity of tea tree oil in tobacco cells. Allelopathy J 23 Print ISSN: 0971-4693. Online ISSN: 0973-5046

    Google Scholar 

  • Kim JH, Campbell BC, Mahoney N, Chan KL, Molineaux RJ, Balajee A (2010) Augmenting the activity of antifungal agents against Aspergilli using structural analogues of benzoic acid as chemosensitizing agents. Fungal Biol 114:817–824

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Mahoney N, Chan K, Molyneaux KL, Campbell BC (2006) Controlling food contaminating fungi by targeting antioxidant stress-response system with natural phenolic compounds. Appl Microbiol Biotechnol 70:735–739

    Article  PubMed  CAS  Google Scholar 

  • Krieg B, Jansen M, Hahn K, Peisker H, Samajova O, Beck M, Braun S, Ulbrich A, Baluska F, Schulz M (2010) Cyclic monoterpenes mediated modulations of Arabidopsis thaliana phenotype. Plant Signal Behav 5(7):832–838

    Article  Google Scholar 

  • Kuete V, Alibert-Franco S, Eyong KO, Ngameni B, Folefoc GN, Nguemeving JR, Tangmouo JG, Fotso GW, Komguem J, Ouahouo BM, Bolla JM, Chevalier J, Ngadjui BT, Nkengfack AE, Pagès JM (2011) Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Ag 37(2):156–161

    Article  CAS  Google Scholar 

  • Kumar A, Shukla R, Singh P, Anuradha, Dubey NK (2010) Efficacy of extract and essential oil of Lantana indica Roxb. against food contaminating moulds and aflatoxin B1 production. Int J Food Sci Technol 45:179–185

    Article  CAS  Google Scholar 

  • Kumar R, Dubey NK, Tiwari OP, Tripathi YB, Sinha KK (2007) Evaluation of some essential oils as botanical fungitoxicants for the protection of stored food commodities from fungal infestation. J Sci Food Agric 87:1737–1742

    Article  CAS  Google Scholar 

  • Lang G, Buchbauer G (2011) A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. Flavour Frag J 27(1):13–39

    Google Scholar 

  • Liu HY, Gao WW, Fan Y, Chen SL (2007) Inhibitory effect of essential oil from Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag against plant pathogenic fungi. Acta Phytopathol Sin 37:95–98

    CAS  Google Scholar 

  • Ma X, Yang X, Zeng F, Yang L, Yu D, Ni H (2010) Physcion, a natural anthraquinone derivative, enhances the gene expression of leaf-specific thionin of barley against Blumeria graminis. Pest Manag Sci 66:718–724

    Article  PubMed  CAS  Google Scholar 

  • Makarovsky I, Boguslavsky Y, Alesker M, Lellouche J, Banin E, Lellouche JP (2011) Novel triclosan-bound hybrid-silica nanoparticles and their enhanced antimicrobial properties. Advanced Func Mat 21(22):4295–4304

    Article  CAS  Google Scholar 

  • Magro A, Matos O, Bastos M, Carolino M, Lima A, Mexia A (2010) The use of essential oils to protect rice from storage fungi. In: 10th international working conference on stored product protection 542 Julius-Kühn-Archiv, p 425

    Google Scholar 

  • Marasas WFO, Kellerman TS, Gelderblom WCA, Coetzer JAW, Thiel PG, van der Lugt JJ (1988) Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort J Vet Res 55:197–203

    PubMed  CAS  Google Scholar 

  • Marìn S, Velluti A, Ramos AJ, Sanchis V (2004) Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiol 21:313–318

    Article  Google Scholar 

  • Montes-Belmont R, Carvajal M (1998) Control of Aspergillus flavus in maize with plant essential oils and their components. J Food Prot 61:616–619

    PubMed  CAS  Google Scholar 

  • Morcia C, Spini M, Malnati M, Stanca Am, Terzi V (2011a) Essential oils and their components for the control of phytopathogenic fungi that affect plant health and agri-food quality and safety. In: Rai M, Chikindas M (eds) Natural antimicrobials for food safety and food quality. CABI Press, Oxford, pp 224–241, ISBN 978-1-84593-769-0

    Google Scholar 

  • Morcia C, Malnati M, Terzi V (2012) In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Add Contam 29(3):415-422

    Google Scholar 

  • Nguefack J, Leth V, Amvam Zollo PH, Mathur SB (2004) Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. Int J Food Microbiol 94:329–334

    Article  PubMed  CAS  Google Scholar 

  • Nogueira JHC, Goncalez E, Galletti SR, Facanali R, Marques MO, Felicio JD (2010) Ageatum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus. Int J Food Microbiol 137:55–60

    Article  PubMed  CAS  Google Scholar 

  • Paranagama PA, Abeysekera KHT, Abeywickrama K, Nugaliyadde L (2003) Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from stored rice. LAM 37:86–90

    PubMed  CAS  Google Scholar 

  • Paster N, Menasherov M, Ravid U, Juven B (1995) Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J Food Sci 58:81–85

    CAS  Google Scholar 

  • Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54(12):5062–5069

    Article  PubMed  CAS  Google Scholar 

  • Razzaghi-Abyaneh M, Yoshinari T, Shams-Ghahfarokhi M, Rezaee MB, Nagasawa H, Sakuda S (2007) Dillapiol and apiol as specific inhibitors of the biosynthesis of aflatoxin G 1 in Aspergillus parasiticus. Biosci Biotechnol Biochem 71:2329–2332

    Article  PubMed  CAS  Google Scholar 

  • Reddy KRN, Reddy CS, Muralidharan K (2009) Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Control 20:173–178

    Article  CAS  Google Scholar 

  • Ross RK, Yu MC, Henderson BE, Yuan J-M, Qian G-S, Tu J-T, Gao Y-T, Wogan GN, Groopman JD (1992) Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. The Lancet 339(8799):943–946

    Article  CAS  Google Scholar 

  • Sanchez-Gonzalez L, Vargas M, Gonzalez-Martinez C, Chiralt A, Chafer M (2011) Use of essential oils in bioactive edible coatings. Food Eng Rev 3:1–16

    Article  CAS  Google Scholar 

  • Schulz M, Kussmann P, Knop M, Kriegs B, Gresens F, Eichert T, Ulbrich A, Marx F, Fabricius H, Goldbach H, Noga G (2007) Allelopathic monoterpenes interfere with Arabidopsis thaliana cuticular waxes and enhance transpiration. Plant Signal Behav 2(4):231–239

    Article  PubMed  Google Scholar 

  • Soliman KM, Badeaa RI (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Soylu EM, Kurt S, Soylu S (2010) In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int J Food Microbiol 143:183–189

    Article  PubMed  CAS  Google Scholar 

  • Srivastava B, Singh P, Shukla R, Dubey NK (2008) A novel combination of the essential oils of Cinnamomum camphora and Alpinia galanga in checking aflatoxin B1 production by a toxigenic strain of Aspergillus flavus. World J Microbiol Biotechnol 24:693–697

    Article  CAS  Google Scholar 

  • Straede A, Heinisch JJ (2007) Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett 581:4495–4500

    Article  PubMed  CAS  Google Scholar 

  • Teng Y, Yang QYuZ, Zhou G, Sun Q, Jin H, Hou T (2010) In vitro antimicrobial activity of the leaf essential oil of Spiraea alpina Pall. World J Microbiol Biotechnol 26:9–14

    Article  CAS  Google Scholar 

  • Tsuyuki R, Yoshinari T, Sakamoto N, Nagasawa H, Sakuda S (2011) Enhancement of Trichothecene Production in Fusarium graminearum by Cobalt Chloride. J Agric Food Chem 59:1760–1766

    Article  PubMed  CAS  Google Scholar 

  • Vechet L, Burketova L, Sindelarova M (2009) A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp. tritici) in wheat under field conditions. Crop Prot 28:151–154

    Article  Google Scholar 

  • Velluti A, Sanchis V, Ramos AJ, Marín S (2004) Effect of essential oils of cinnamon, clove, lemongrass, oregano and palmarosa on growth of and fumonisin B1 production by Fusarium verticillioides in maize. J Sci Food Agric 84:1141–1146

    Article  CAS  Google Scholar 

  • Velluti A, Sanchis V, Ramos AJ, Egido J, Marìn S (2003) Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int J Food Microbiol 89:145–154

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The Am J Clin Nutr 80:1106–1122

    CAS  Google Scholar 

  • Yaguchi A, Yoshinari T, Tsuyuki R, Takahashi H, Nakajima T, Sugita-Konishi Y, Nagasawa H, Sakuda S (2009) Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of thricothecene production by Fusarium graminearum. J Agric Food Chem 57:846–851

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Sawai Y, Tamotsu S, Sakai A (2011) 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J Chem Ecol 37:320–328

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari T, Yaguchi A, Takahashi-Ando N, Kimura M, Takahashi H, Nakajima T, Konichi Sugita, Nagasawa, Sakuda (2008) Spiroethers of German chamomile inhibit production of aflatoxin G and trichothecene mycotoxin by inhibiting cytochrome P450 monooxygenases involved in their biosynthesis. FEMS Microbiol Lett 284:184–190

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Terzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morcia, C., Tumino, G., Terzi, V. (2013). Plant Bioactive Metabolites for Cereal Protection Against Fungal Pathogens. In: Razzaghi-Abyaneh, M., Rai, M. (eds) Antifungal Metabolites from Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38076-1_14

Download citation

Publish with us

Policies and ethics