Skip to main content

Introduction: The Parasitic Syndrome in Higher Plants

  • Chapter
  • First Online:
Parasitic Orobanchaceae

Abstract

The Orobanchaceae is the largest out of the twenty described families of parasitic plants. This chapter clarifies the position of the Orobanchaceae within the world of parasitic plants. It presents a general description of the diversity of parasitic plants within the Plant Kingdom and explains the main modes of plant parasitism, briefly describing the parasites belonging to the various families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amico GC, Aizen MA (2000) Mistletoe seed dispersal by a marsupial. Nature 408:929–930

    PubMed  CAS  Google Scholar 

  • Bänziger H (1991) Stench and fragrance: unique pollination lure of Thailand’s largest flower, Rafflesia kerrii Meijer. Nat Hist Bull Siam Soc 39:19–52

    Google Scholar 

  • Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93:1039–1051

    PubMed  CAS  Google Scholar 

  • Beyer C, Forstreuter W, Weber HC (1989) Anatomical studies of haustorium ontogeny and the remarkable mode of penetration of the haustorium in Nuytsia floribunda (Labill.) R. Br. Bot Acta 102:229–235

    Google Scholar 

  • Bhandari NN, Mukerji KG (1993) The haustorium. Wiley, New York

    Google Scholar 

  • Blarer A, Nickrent DL, Endress PK (2004) Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Syst Evol 245:119–142

    Google Scholar 

  • Calder M, Bernhardt P (eds) (1983) The biology of mistletoes. Academic, Sydney

    Google Scholar 

  • Calladine A, Pate JS (2000) Haustorial structure and functioning of the root hemiparasitic tree Nuytsia floribunda (Labill.) R. Br. and water relationships with its hosts. Ann Bot 85:723–731

    Google Scholar 

  • Calvin CL (1967) Anatomy of the endophytic system of the mistletoe Phoradendron flavescens. Bot Gaz 128:117–137

    Google Scholar 

  • Calvin CL, Wilson CA (2006) Comparative morphology of epicortical roots in Old and New World Loranthaceae with reference to root types, origin, patterns of longitudinal extension and potential for clonal growth. Flora 201:51–64

    Google Scholar 

  • Calvin CL, Wilson CA (2009) Epiparasitism in Phoradendron durangense and P. falcatum (Viscaceae). Aliso 27:1–12

    Google Scholar 

  • Carlón L, Gómez Casares G, Laínz M, Moreno Moral G, Sánchez Pedraja Ó, Schneeweiss GM (2008) Más, a propósito de algunas Phelipanche Pomel, Boulardia F. W. Schultz y Orobanche L. (Orobanchaceae) del oeste del Paleártico. Documentos Jard Bot Atlántico (Gijón) 6:1–128

    Google Scholar 

  • Coetzee JF, Fineran BA (1987) The apoplastic continuum, nutrient absorption and plasmatubules in the dwarf mistletoe Korthalsella lindsayi (Viscaceae). Protoplasma 136:145–153

    Google Scholar 

  • Coleman E (1934) Notes on Exocarpus. Victorian Nat 51:132–139

    Google Scholar 

  • De Candolle AP (1813) Théorie élémentaire de la botanique. Déterville, Paris

    Google Scholar 

  • De Vega C, Ortiz PL, Arista M, Talavera S (2007) The endophytic system of mediterranean Cytinus (Cytinaceae) developing on five host Cistaceae species. Ann Bot 100:1209–1217

    PubMed  Google Scholar 

  • dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339

    PubMed  CAS  Google Scholar 

  • Der JP, Nickrent DL (2008) A molecular phylogeny of Santalaceae (Santalales). Syst Bot 33:107–116

    Google Scholar 

  • Dobbins DR, Kuijt J (1973) Studies of the haustorium of Castilleja (Scrophulariaceae). II. The endophyte. Can J Bot 51:923–931

    Google Scholar 

  • Dobbins DR, Kuijt J (1974) Anatomy and fine structure of the mistletoe haustorium (Phthirusa pyrifolia). I. Development of the young haustorium. Am J Bot 61:535–543

    Google Scholar 

  • Dörr I (1972) Der Anschluss der Cuscuta-hyphen an die Siebröhren ihrer Wirtspflanzen. Protoplasma 75:167–184

    Google Scholar 

  • Dörr I (1997) How Striga parasitizes its host: a TEM and SEM study. Ann Bot 79:463–472

    Google Scholar 

  • Dörr I, Kollmann R (1995) Symplastic sieve element continuity between Orobanche and host. Bot Acta 108:47–55

    Google Scholar 

  • Feild TS, Brodribb TJ (2005) A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Environ 28:1316–1325

    CAS  Google Scholar 

  • Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219

    PubMed  Google Scholar 

  • Fineran BA (1963a) Studies of the root parasitism of Exocarpus bidwillii Hook f. II. External morphology, distribution and arrangement of haustoria. Phytomorphology 13:30–41

    Google Scholar 

  • Fineran BA (1963b) Parasitism in Exocarpus bidwillii Hook. f. Trans R Soc N Z Bot 2:109–119

    Google Scholar 

  • Fineran BA (1985) Graniferous tracheary elements in haustoria of root parasites. Bot Rev 51:389–441

    Google Scholar 

  • Fineran BA (1991) Root hemiparasitism in the Santalales. Bot Jahrb Syst 113:277–308

    Google Scholar 

  • Fineran BA, Calvin CL (2000) Transfer cells and flange cells in sinkers of the mistletoe Phoradendron macrophyllum (Viscaceae), and their novel combination. Protoplasma 211:76–93

    Google Scholar 

  • Fineran BA, Hocking PJ (1983) Features of parasitism, morphology and haustorial anatomy in Loranthaceous root parasites. In: Calder M, Bernhardt P (eds) The biology of mistletoes. Academic, Sidney, pp 205–227

    Google Scholar 

  • Fineran BA, Ingerfeld M, Patterson WD (1987) Inclusions of graniferous tracheary elements in the root hemiparasite Olax phyllanthi (Olacaceae). Protoplasma 136:16–28

    Google Scholar 

  • Gedalovich-Shedletzky E, Kuijt J (1990) An ultrastructural study of the tuber strands of Balanophora (Balanophoraceae). Can J Bot 68:1271–1279

    Google Scholar 

  • Geils B, Tovar JC, Moody B (eds) (2002) Mistletoes of North American conifers. UT, Ogden

    Google Scholar 

  • Gibson CC, Watkinson AR (1989) The host range and selectivity of a parasitic plant: Rhinanthus minor L. Oecologia 78:401–406

    Google Scholar 

  • Govier RN, Nelson MD, Pate JS (1967) Hemiparasitic nutrition in Angiosperms. I. The transfer of organic compounds from host to Odontites verna (Bell.) Dum. (Scrophulariaceae). New Phytol 66:285–297

    CAS  Google Scholar 

  • Hansen B (1972) The genus Balanophora J. R. & G. Forster. A taxonomic monograph. Dansk Bot Ark 28:1–188

    Google Scholar 

  • Heide-Jørgensen HS (1989) Development and ultrastructure of the haustorium of Viscum minimum Harvey. I. The adhesive disk. Can J Bot 67:1161–1173

    Google Scholar 

  • Heide-Jørgensen HS (1991) Anatomy and ultrastructure of the haustorium of Cassytha pubescens R. Br. – I. The adhesive disk. Bot Gaz 152:321–334

    Google Scholar 

  • Heide-Jørgensen HS (2008) Parasitic flowering plants. Brill, Leiden

    Google Scholar 

  • Heide-Jørgensen HS (2011) Parasitic plants. In: Simberloff D, Reymánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 504–510

    Google Scholar 

  • Heide-Jørgensen HS, Kuijt J (1993) Epidermal derivatives as xylem elements and transfer cells: a study of the host-parasite interface in two species of Triphysaria (Scrophulariaceae). Protoplasma 174:173–183

    Google Scholar 

  • Heide-Jørgensen HS, Kuijt J (1995) The haustorium of the root parasite Triphysaria (Scrophulariaceae), with special reference to xylem bridge ultrastructure. Am J Bot 82:782–797

    Google Scholar 

  • Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP (1998) Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205:506–513

    CAS  Google Scholar 

  • Hiepko P (1979) A revision of Opiliaceae I. Genera of the eastern Old World, excluding Opilia. Wildenowia 9:13–56

    Google Scholar 

  • Hiepko P (1982) A revision of Opiliaceae II. Opilia Roxb. Wildenowia 12:161–182

    Google Scholar 

  • Hinds TE, Hawksworth FH, McGinnies WJ (1963) Seed discharge in Arceuthobium: a photographic study. Science 140:1236–1238

    PubMed  CAS  Google Scholar 

  • Hooker JD (1847) The botany of the Antarctic voyage of H. M. Discovery ships Erebus and Terror in the years 1839–1843. I. Flora Antarctica. Part II, XXII. Loranthaceae, pp 289–302

    Google Scholar 

  • Hsiao S-C, Mauseth JD, Peng C-I (1995) Composite bundles, the host/parasite interface in the holoparasitic angiosperms Langsdorffia and Balanophora. Am J Bot 82:81–91

    Google Scholar 

  • Imhof S (2010) Are monocots particularly suited to develop mycoheterotrophy? In: Seberg O, Petersen G, Barfod AS, Davis JI (eds) Diversity, phylogeny, and evolution in the monocotyledons. Aarhus University Press, Denmark

    Google Scholar 

  • Joel DM, Hershenhorn J, Eizenberg H, Aly R, Ejeta G, Rich P, Ransom J, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. Hortic Rev 33:207–349

    Google Scholar 

  • Kirkup D (1998) Pollination mechanisms in African Loranthaceae. In: Polhill R, Wiens D (eds) Mistletoes of Africa. The Royal Botanic Gardens, Kew, pp 37–60

    Google Scholar 

  • Kuijt J (1966) Parasitism in Pholisma (Lennoaceae). I. External morphology of subterranean organs. Am J Bot 53:82–86

    Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Kuijt J (1977) Haustoria of phanerogamic parasites. Ann Rev Phytopathol 17:91–118

    Google Scholar 

  • Kuijt J (1979) Host selection by parasitic Angiosperms. Symb Bot Upsal 22:194–199

    Google Scholar 

  • Kuijt J (1988) Monograph of the Eremolepidaceae. Syst Bot Monogr 18:1–60

    Google Scholar 

  • Kuijt J (2003) Monograph of Phoradendron (Viscaceae). Syst Bot Monogr 66:1–643

    Google Scholar 

  • Kuijt J (2009) Monograph of Psittacanthus (Loranthaceae). Syst Bot Monogr 86:1–361

    Google Scholar 

  • Kuijt J, Weber HC, Visser JH (1978) Morphological observations on leaf haustoria and related organs of the South African genus Hyobanche (Scrophulariaceae). Can J Bot 56:2981–2986

    Google Scholar 

  • Kuijt J, Bray D, Olson AR (1985) Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). Can J Bot 63:1231–1240

    Google Scholar 

  • Ladley JJ, Kelly D (1995) Explosive New Zealand mistletoe. Nature 378:766

    CAS  Google Scholar 

  • Lam HJ (1945) Fragmenta Papuana. Sargentia 5:1–196

    Google Scholar 

  • Lanfranco GG (1960) Cynomorium coccineum Linn., A Maltese historical plant. J Malta Hist Soc 3:53–70

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Google Scholar 

  • Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:422–428

    PubMed  CAS  Google Scholar 

  • Lye D (2006) Charting the isophasic endophyte of dwarf mistletoe Arceuthobium douglasii (Viscaceae) in host apical buts. Ann Bot 97:953–963

    PubMed  Google Scholar 

  • Malécot V, Nickrent DL (2008) Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst Bot 33:97–106

    Google Scholar 

  • Mathiasen RL, Nickrent DL, Shaw DC, Watson DM (2008) Mistletoes: pathology, systematics, ecology, and management. Plant Dis 92:988–1006

    Google Scholar 

  • Meijer W (1984) New species of Rafflesia (Rafflesiaceae). Blumea 30:209–215

    Google Scholar 

  • Meijer W, Veldkamp JF (1993) A revision of Mitrastema (Rafflesiaceae). Blumea 38:221–229

    Google Scholar 

  • Molau U (1995) Reproductive ecology and biology. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 141–176

    Google Scholar 

  • Musselman LJ, Visser JH (1989) Taxonomy and natural history of Hydnora (Hydnoraceae). Aliso 12:317–321

    Google Scholar 

  • Narasimha VL, Rabindranath V (1964) A further contribution to the host range of Dendrophthoe falcata (L.f.) Ettingsh. Bull Bot Surv India 6:103

    Google Scholar 

  • Nickrent DL (2007) Cytinaceae are sister to Muntingiaceae (Malvales). Taxon 56:1129–1135

    Google Scholar 

  • Nickrent DL (2008) Phylogenetic relationships of parasitic flowering plants. Retrieved 20 Aug 2012 from http://www.science.siu.edu/parasitic-plants/index.html

  • Nickrent DL (2010) The parasitic plant connection. Retrieved 20 Oct 2010 from http://www.science.siu.edu/parasitic-plants/index.html

  • Nickrent DL, Franchina CR (1990) Phylogenetic relationships of the Santalales and relatives. J Mol Evol 31:294–301

    PubMed  CAS  Google Scholar 

  • Nickrent DL, Malécot V (2001) A molecular phylogeny of Santalales. In: Fer A, Thalouarn P, Joel DM, Musselman LJ, Parker C, Verkleij JAC (eds) Proceedings of the 7th international parasitic weed symposium. Faculté des Sciences, Université de Nantes, Nantes, France, pp 69–74

    Google Scholar 

  • Nickrent DL, Malécot V, Vidal-Russell R, Der JP (2010) A revised classification of Santalales. Taxon 59:538–558

    Google Scholar 

  • Nilsson CH, Svensson BM (1997) Host affiliation in two subarctic hemiparasitic plants: Bartsia alpina and Pedicularis lapponica. Ecoscience 4:80–85

    Google Scholar 

  • Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophularaceae. Am J Bot 88:348–361

    PubMed  CAS  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB, Wallingford

    Google Scholar 

  • Pate JS, Kuo J, Davidson NJ (1990) Morphology and anatomy of the root hemiparasite Olax phyllanthi (Olacaceae), with special reference to the haustorial interface. Ann Bot 65:425–436

    Google Scholar 

  • Polhill R, Wiens D (1998) Mistletoes of Africa. The Royal Botanic Gardens, Kew

    Google Scholar 

  • Press MC, Graves JD (eds) (1995) Parasitic plants. Chapman and Hall, London

    Google Scholar 

  • Revill MJW, Stanley S, Hibberd JM (2005) Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 56:2477–2486

    PubMed  CAS  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    PubMed  CAS  Google Scholar 

  • Sahni B (1933) Explosive fruits in Viscum japonicum, Thunb. J Indian Bot Soc 12:96–101

    Google Scholar 

  • Satovic Z, Joel DM, Rubiales D, Cubero JI, Román B (2009) Population genetics in weedy species of Orobanche. Australas Plant Pathol 38:228–234

    Google Scholar 

  • Simpson BB (1989) Krameriaceae. Flora Neotropica Monograph 49:1–109

    Google Scholar 

  • Spisar K (1910) Beiträge zur Physiologie der Cuscuta gronovii. Ber Deutsch Bot Ges 28:329–334

    Google Scholar 

  • Tennakoon KU, Cameron DD (2006) The anatomy of Santalum album (Sandalwood) haustoria. Can J Bot 84:1608–1616

    Google Scholar 

  • Tennakoon KU, Bolin JF, Musselman LJ, Maass E (2007) Structural attributes of the hypogeous holoparasite Hydnora triceps Drège & Meyer (Hydnoraceae). Am J Bot 94:1439–1449

    PubMed  Google Scholar 

  • Teryokhin ES, Shibakina GV, Serafimovitch NB, Kravtsova TI (1993) Determination of broomrapes in the USSR flora (in Russian). Nauka, Sankt-Peterburg

    Google Scholar 

  • Thomson LAJ (2006) Santalum austrocaledonicum and S. yasi (sandalwood ver. 2.1. In: Elevitch CR (ed) Species profiles for Pacific Island agroforestry. Permanent Agriculture Resources (PAR), Holualoa, pp 1–21 (http://www.traditionaltree.org)

    Google Scholar 

  • Thorne RF (2002) How many species of seed plants are there? Taxon 51:511–512

    Google Scholar 

  • Toth R, Kuijt J (1976) Anatomy and ultrastructure of the young haustorial gland in Comandra (Santalaceae). Can J Bot 54:2315–2327

    Google Scholar 

  • Toth R, Kuijt J (1977) Anatomy and ultrastructure of the haustorium in Comandra (Santalaceae). Can J Bot 55:455–469

    Google Scholar 

  • Trattinick, In: Schlechtendal DFL (1828) Nachtrag zu der Ichthyosoma wehdemanni. Linnaea 3:194–198

    Google Scholar 

  • Van der Kooij TAW, Krause K, Dörr I (2000) Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210:701–707

    PubMed  Google Scholar 

  • Veenendaal EM, Abebrese IK, Walsh MF, Swaine MD (1996) Root hemiparasitism in a West African rainforest tree Okoubaka aubrevillei (Santalaceae). New Phytol 134:487–493

    Google Scholar 

  • Vidal-Russell R, Nickrent DN (2007) A molecular phylogeny of the Feathery Mistletoe Misodendrum. Syst Bot 32:560–568

    Google Scholar 

  • von Tubeuf K (1923) Monographie der Mistel. R Oldenbourg, München

    Google Scholar 

  • Watson DM (2001) Mistletoe – a keystone resource in forests and woodlands worldwide. Ann Rev Ecol Syst 32:219–249

    Google Scholar 

  • Weber HC (1976) Über Wirtspflanzen und Parasitismus einiger mitteleuropäischer Rhinanthoideae (Scrophulariaceae). Plant Syst Evol 125:97–107

    Google Scholar 

  • Weber HC (1980) Untersuchungen an australischen und neuseeländischen Loranthaceae/Viscaceae. 1. Zur Morphologie und Anatomie der unterirdischen Organe von Nuytsia floribunda (Labill.) R. Br. Beitr Biol Pflanzen 55:77–99

    Google Scholar 

  • Weber JZ (1981) A taxonomic revision of Cassytha (Lauraceae) in Australia. J Adelaide Bot Gard 3:187–262

    Google Scholar 

  • Weber HC (1993) Parasitismus von Blütenpflanzen. Wissenschaftliche Buchgesselschaft, Darmstadt

    Google Scholar 

  • Werth CR, Baird WV, Musselman LJ (1979) Root parasitism in Schoepfia schreberi. (Olacaceae). Biotropica 11:140–143

    Google Scholar 

  • Wolswinkel P (1974) Complete inhibition of setting and growth of fruits of Vicia faba L., resulting from the draining of the phloem system by Cuscuta species. Acta Bot Neerl 23:48–60

    Google Scholar 

  • Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570

    PubMed  Google Scholar 

  • Young ND, Steiner KE, dePamphilis CW (1999) The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Ann Mo Bot Gard 86:876–893

    Google Scholar 

  • Yuncker TG (1932) The genus Cuscuta. Mem Torrey Bot Club 18:109–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning S. Heide-Jørgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heide-Jørgensen, H.S. (2013). Introduction: The Parasitic Syndrome in Higher Plants. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_1

Download citation

Publish with us

Policies and ethics