Skip to main content

White Blood Cell Differential Counts Using Convolutional Neural Networks for Low Resolution Images

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7895))

Included in the following conference series:

Abstract

The Complete Blood Count (CBC) is a medical diagnostic test concerned with identifying and counting basic blood cells such as red blood cells (RBC), white blood cells (WBC) and platelets. The computerized automation of CBC has been a challenging problem in medical diagnostics. In this work we describe a subcomponent system for the CBC to perform the automatic classification of WBC cells into one of five WBC types in low resolution cytological images. We describe feature extraction and consider three classifiers: a support vector machine (SVM) using standard intensity and histogram features, an SVM with features extracted by a kernel principal component analysis of the intensity and histogram features, and a convolutional neural network (CNN) which takes the entire image as input. The proposed classifiers were compared through experiments conducted on low resolution cytological images of normal blood smears. The best results were obtained with the CNN solution with recognition rates either higher or comparable to the SVM-based classifiers for all five types of WBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol. 609, pp. 223–239. Humana Press (2010)

    Google Scholar 

  2. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Chan, H., Li-Jun, J., Jiang, B.: Wavelet transform and morphology image segmentation algorism for blood cell. In: 4th IEEE International Conference on Industrial Electronics and Applications, Xi’an, China, May 25-28, pp. 542–545 (2009)

    Google Scholar 

  4. Comaniciu, D., Meer, P.: Cell image segmentation for diagnostic pathology. In: Advanced Algorithmic Approaches to Medical Image Segmentation, pp. 541–558. Springer, New York (2002)

    Chapter  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. Dorini, L.B., Minetto, R., Leite, N.: Semi-automatic white blood cell segmentation based on multiscale analysis. IEEE Transactions on Information Technology in Biomedicine (2012) (to appear)

    Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience (November 2001)

    Google Scholar 

  8. Habibzadeh, M., Krzyżak, A., Fevens, T.: Application of pattern recognition techniques for the analysis of thin blood smear images. Journal of Medical Informatics & Technologies 18, 29–40 (2011)

    Google Scholar 

  9. Habibzadeh, M., Krzyżak, A., Fevens, T.: Analysis of white blood cell differential counts using dual-tree complex wavelet transform and support vector machine classifier. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 414–422. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Habibzadeh, M., Krzyżak, A., Fevens, T., Sadr, A.: Counting of RBCs and WBCs in noisy normal blood smear microscopic images. In: SPIE Medical Imaging: Computer-Aided Diagnosis, Orlando, FL, USA, February 12-17, vol. 7963, p. 79633I (2011)

    Google Scholar 

  11. Hamghalam, M., Motameni, M., Kelishomi, A.E.: Leukocyte segmentation in giemsa-stained image of peripheral blood smears based on active contour. In: IEEE International Conference on Signal Processing Systems, Los Alamitos, CA, USA, May 15-17, pp. 103–106 (2009)

    Google Scholar 

  12. Jiang, K., Liao, Q.-M., Dai, S.-Y.: A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: IEEE International Conference on Machine Learning and Cybernetics, Xi’an, China, November 2-5, pp. 2820–2825 (2003)

    Google Scholar 

  13. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer-Verlag, New York Inc. (2002)

    Google Scholar 

  14. Kumar, B.R., Joseph, D.K., Sreenivas, T.V.: Teager energy based blood cell segmentation. In: 14th International Conference on Digital Signal Processing, Santorini, Greece, July 1-3, pp. 619–622 (2002)

    Google Scholar 

  15. Lauer, F., Suen, C.Y., Bloch, G.: A trainable feature extractor for handwritten digit recognition. Pattern Recognition 40(6), 1816–1824 (2007)

    Article  MATH  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. LeCun, Y., Huang, F.-J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, USA, June 27-July 2, vol. 2, pp. II-97–II-104 (2004)

    Google Scholar 

  18. Lezoray, O., Elmoataz, A., Cardot, H., Gougeon, G., Lecluse, M., Elie, H., Revenu, M.: Segmentation of cytological images using color and mathematical morphology. Acta Stereologica 18(1), 1–14 (1999)

    Google Scholar 

  19. Ogiela, M.R., Tadeusiewicz, R.: Syntactic reasoning and pattern recognition for analysis of coronary artery images. Artif. Intell. Med. 26(1-2), 145–159 (2002)

    Article  Google Scholar 

  20. Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksac, S.: Feature extraction and classification of blood cells for an automated differential blood count system. In: International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19, pp. 2461–2466 (2001)

    Google Scholar 

  21. Ramoser, H., Laurain, V., Bischof, H., Ecker, R.: Leukocyte segmentation and classification in blood-smear images. In: 27th IEEE Annual Conference Engineering in Medicine and Biology, Shanghai, China, September 1-4, pp. 3371–3374 (2005)

    Google Scholar 

  22. Rathi, Y., Dambreville, S., Tannenbaum, A.: Statistical shape analysis using kernel PCA. In: SPIE Conferences: IS&T Electronic Imaging, San Jose, CA, Jan. 15-19, vol. 6064, p. 60641B (2006)

    Google Scholar 

  23. Rodenacker, K., Bengtsson, E.: A feature set for cytometry on digitized microscopic images. Analytical Cellular Pathology 25(1), 1–36 (2001)

    Google Scholar 

  24. Shitong, W., Min, W.: A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans. on Information Technology in Biomedicine 10(1), 5–10 (2006)

    Article  Google Scholar 

  25. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: 7th International Conference on Document Analysis and Recognition, Washington, DC, USA, August 3-6, pp. 958–963 (2003)

    Google Scholar 

  26. Sinha, N., Ramakrishnan, A.G.: Automation of differential blood count. In: IEEE Inter’l Conf. on Convergent Technologies for Asia-Pacific Region, Bangalore, India, October 15-17, pp. 547–551 (2003)

    Google Scholar 

  27. Skubalska-Rafajłowicz, E.: Pattern recognition algorithms based on space-filling curves and orthogonal expansions. IEEE Transactions on Information Theory 47(5), 1915–1927 (2001)

    Article  MATH  Google Scholar 

  28. Theera-Umpon, N., Dhompongsa, S.: Morphological Granulometric Features of Nucleus in Automatic Bone Marrow White Blood Cell Classification. IEEE Transactions on Information Technology in Biomedicine 11(3), 353–359 (2007)

    Article  Google Scholar 

  29. Ushizima, D.M., Lorena, A.C., de Carvalho, A.C.P.L.F.: Support Vector Machines Applied to White Blood Cell Recognition. In: 5th International Conference on Hybrid Intelligent Systems, November 6-9, pp. 379–384. Rio de Janeiro, Brazil (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Habibzadeh, M., Krzyżak, A., Fevens, T. (2013). White Blood Cell Differential Counts Using Convolutional Neural Networks for Low Resolution Images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics