Skip to main content

A New Method of Centers Location in Gaussian RBF Interpolation Networks

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7894))

Included in the following conference series:

  • 1807 Accesses

Abstract

In this paper we present a new method of obtaining near-optimal points sets for interpolation by Gaussian radial basis functions networks. The method is based on minimizing the maximal value of the power function. The power function provides an upper bound on the local RBF interpolation error. We use Latin hypercube designs and a space-filling curve based space-filling designs as starting points for the optimization procedure. We restrict our attention to 1-D and 2-D interpolation problems. Finally, we provide results of several numerical experiments. We compare the performance of this new method with the method of [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan, M., Russenschuck, S.: Using neural networks to speed up optimization algorithms. Eur. Phys. J., AP 12, 109–115 (2000)

    Article  Google Scholar 

  2. Bazan, M., Aleksa, M., Russenschuck, S.: An improved method using radial basis function neural networks to speed up optimization algorithms. IEEE Trans. on Magnetics 38, 1081–1084 (2002)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Science+Business Media, New York (2006)

    MATH  Google Scholar 

  4. Broomhead, D.S., Lowe, D.: Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  5. van Dam, E.: Two-dimensional minimax Latin hypercube designs. Discrete Applied Math. 156(18), 3483–3493 (2007)

    Google Scholar 

  6. De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent points locations for radial basis function interpolation. Adv. in Comp. Math. 23(3), 317–330 (2003)

    Article  Google Scholar 

  7. De Marchi, S.: On optimal center locations for radial basis function interpolation: computational aspects. Rend. Sem. Mat. Univ. Pol. Torino, Splines and Radial Functions 61(3), 343–358 (2003)

    MATH  Google Scholar 

  8. Dyn, N., Levin, D., Rippa, S.: Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions. SIAM Journal of Scientific and Statistical Computing 7(2), 639–659 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fasshauer, G.E., Zhang, J.G.: Preconditioning of Radial basis function interpolation systems via accelerated iterated approximate moving least squares approximation. In: Ferreira, A.J.M., et al. (eds.) Progress in Meshless Methods. Springer (2009)

    Google Scholar 

  10. Franke, R.: Scattered Data Interpolation, Test of Some Methods. Mathematics of Computation 38, 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial basis functions. Computers Math. Applic. 47(1), 37–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, P.C.: Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  14. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7(2), 219–269 (1995)

    Article  Google Scholar 

  15. Ishikawa, T.T., Matsunami, M.: A combined method for global optimization using radial basis function and deterministic approach. IEEE Trans. Magn. 35, 1730–1733 (1999)

    Article  Google Scholar 

  16. Jacob, H.G.: Rechnergestützte Optimierung statischer und dynamischer Systeme. Springer (1982)

    Google Scholar 

  17. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments. Springer (2009)

    Google Scholar 

  18. Kainen, P.C., Kurková, V., Sanguineti, M.: Complexity of Gaussian-radial-basis networks approximating smooth functions. Journal of Complexity 25(1), 63–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krzyżak, A., Skubalska-Rafajłowicz, E.: Combining space-filling curves and radial basis function networks. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 229–234. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Lin, G.F., Chen, L.H.: A spatial interpolation method based on radial basis function networks incorporating a semivariogram model. Journal of Hydrology 288, 288–298 (2004)

    Article  Google Scholar 

  21. Micchelli, C.A.: Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions. Constructive Approximation 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moody, J., Darken, J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  23. Park, J., Sandberg, I.W.: Approximation and radial-basis-function networks. Neural Computation 5(2), 305–316 (1993)

    Article  Google Scholar 

  24. Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Poggio, T., Girosi, F.: A Theory of Networks for Approximation and Learning, AI Lab, MIT, AI Memo 1140 (1989)

    Google Scholar 

  26. Powell, M.J.D.: Radial basis functions for multivariable interpolation: a review. In: Algorithms for Approximation. Claredon Press, Oxford (1987)

    Google Scholar 

  27. Rafajłowicz, E., Schwabe, R.: Halton and Hammersley sequences in multivariate nonparametric regression. Statistics and Probability Letters 76, 803–812 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rafajłowicz, E., Skubalska-Rafajłowicz, E.: RBF nets based on equidistributed points. In: Proc. of 9th IEEE International Conf. Methods and Models in Automation and Robotics MMAR 2003, vol. 2, pp. 921–926 (2003)

    Google Scholar 

  29. Rafajłowicz, E., Skubalska-Rafajłowicz, E.: RBF nets for approximating an object’s boundary by image random sampling. Nonlinear Analysis: Theory, Methods and Applications 71(12), 1247–1254 (2009)

    Article  Google Scholar 

  30. Regis, R.G., Shoemaker, C.A.: Improved Strategies for Radial basis Function Methods for Global Optimization. J. of Global Optimization 37(1), 113–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of function. The Computer Journal 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  32. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and Analysis of Computer Experiments. Statistical Science 4(4), 409–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer Series in Stastistics (2003)

    Google Scholar 

  34. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Advances in Computational Mathematics 3, 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schaback, R.: Native Hilbert spaces for radial basis functions I. In: Müller, M.W., et al. (eds.) New Developments in Approximation Theory, 2nd Int. Dortmund Meeting (IDoMAT) 1998. Int. Ser. Numer. Math., vol. 132, pp. 255–282. Birkhäuser Verlag, Basel (1999)

    Google Scholar 

  36. Skubalska-Rafajłowicz, E.: Space-filling Curves in Multivariate Decision Problems. Wrocław University of Technology Press, Wrocław (2001) (in Polish)

    Google Scholar 

  37. Skubalska-Rafajłowicz, E.: RBF Neural Network for Probability Density Function Estimation and Detecting Changes in Multivariate Processes. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 133–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Skubalska-Rafajłowicz, E.: Random Projection RBF Nets for Multidimensional Density Estimation. Int. J. Appl. Math. Comput. Sci. 18(4), 455–464 (2008)

    MATH  Google Scholar 

  39. Skubalska-Rafajłowicz, E., Rafajłowicz, E.: Sampling multidimensional signals by a new class of quasi-random sequences. Multidimensional System and Signal Processing 23, 237–253 (2012)

    Article  Google Scholar 

  40. Wendland, H.: Scattered Data Approximation. Cambridge University Press (2005)

    Google Scholar 

  41. Wu, Z., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, M., Skubalska-Rafajłowicz, E. (2013). A New Method of Centers Location in Gaussian RBF Interpolation Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38658-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38657-2

  • Online ISBN: 978-3-642-38658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics