Skip to main content

Reduced Genomes from Parasitic Plant Plastids: Templates for Minimal Plastomes?

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 75))

Abstract

Plastids are the characteristic cell organelles of plants. While movement, loss, and replacement of whole plastids have occurred in single-celled algae and some parasites derived thereof, land plants have shown more moderate twists in plastid evolution. Here, the most poignant deviations are the reduction in size and coding capacity of plastid genomes as a consequence of a heterotrophic lifestyle in haustorial parasites and mycoheterotrophic plants, which will be broadly summarized in this article as “parasitic plants”. While the loss of photosynthesis genes can be easily explained with the vanishing of a photoautotrophic lifestyle, other gene losses are more difficult to reconcile with persisting regulatory and metabolic functions of the reduced plastids. An assessment of plastid gene essentiality using tobacco plastome mutants revealed that the catalog of losses even includes genes for the gene expression apparatus that are essential for cell viability under heterotrophic conditions. We will discuss whether these genes really are dispensable and to what degree minimal parasitic plant plastomes could be blueprints for artificial plastid genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci 100:15730–15735

    Article  PubMed  CAS  Google Scholar 

  • Alkatib S, Scharff LB, Rogalski M, Fleischmann TT, Matthes A, Schöttler MA, Ruf S, Bock R (2012a) The contributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet 8:e1003076

    Article  PubMed  CAS  Google Scholar 

  • Alkatib S, Fleischmann TT, Scharff LB, Bock R (2012b) Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res 40:6713–6724

    Article  PubMed  CAS  Google Scholar 

  • Allison L (2000) The role of sigma factors in plastid transcription. Biochimie 82:537–548

    Article  PubMed  CAS  Google Scholar 

  • Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S, Melzer M, Petersen K, Lein W, Bornke F (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515

    Article  PubMed  CAS  Google Scholar 

  • Baba K, Schmidt J, Espinosa-Ruiz A, Villarejo A, Shiina T, Gardestrom P, Sane AP, Bhalerao RP (2004) Organellar gene transcription and early seedling development are affected in the rpoT;2 mutant of Arabidopsis. Plant J 38:38–48

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2

    Google Scholar 

  • Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108

    Article  PubMed  CAS  Google Scholar 

  • Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532

    Article  PubMed  CAS  Google Scholar 

  • Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, Depamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248

    Article  PubMed  CAS  Google Scholar 

  • Barrett CF, Davis JI (2012) The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am J Bot 99:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Berg S, Krupinska K, Krause K (2003) Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition. Planta 218:135–142

    Article  PubMed  CAS  Google Scholar 

  • Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546

    Article  PubMed  CAS  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids, vol 19, Topics in current genetics. Springer, Berlin, pp 29–62

    Chapter  Google Scholar 

  • Borza T, Popescu CE, Lee RW (2005) Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot Cell 4:253–261

    Article  PubMed  CAS  Google Scholar 

  • Bubunenko MG, Schmidt J, Subramanian AR (1994) Protein substitution in chloroplast ribosome evolution: a eukaryotic cytosolic protein has replaced its organelle homologue (L23) in spinach. J Mol Biol 240:28–41

    Article  PubMed  CAS  Google Scholar 

  • Bubunenko M, Korepanov A, Court DL, Jagannathan I, Dickinson D, Chaudhuri BR, Garber MB, Culver GM (2006) 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15. RNA 12:1229–1239

    Article  PubMed  CAS  Google Scholar 

  • Bundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Cahoon AB, Stern DB (2001) Plastid transcription: a menage a trois? Trends Plant Sci 6:45–46

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1966) Codon—anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  PubMed  CAS  Google Scholar 

  • Dawson JH, Musselman LI, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317

    Google Scholar 

  • de Koning AP, Keeling PJ (2004) Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga. Eukaryot Cell 3:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • de Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12

    Article  PubMed  CAS  Google Scholar 

  • Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Article  PubMed  CAS  Google Scholar 

  • Demarsy E, Buhr F, Lambert E, Lerbs-Mache S (2012) Characterization of the plastid-specific germination and seedling establishment transcriptional programme. J Exp Bot 63:925–939

    Article  PubMed  CAS  Google Scholar 

  • DeSantis-Maciossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rüdiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489

    Article  CAS  Google Scholar 

  • Duchêne A-M, Pujol C, Maréchal-Drouard L (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 55:1–18

    Article  PubMed  CAS  Google Scholar 

  • Favory JJ, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay JG, Lerbs-Mache S (2005) Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res 33:5991–5999

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schöttler MA, Bock R (2011) Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell 23:3137–3155

    Article  PubMed  CAS  Google Scholar 

  • Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    Article  PubMed  CAS  Google Scholar 

  • Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10:3073–3078

    PubMed  CAS  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  PubMed  CAS  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Allison L, Maliga P (1997) The two RNA-polymerases encoded by the nuclear and plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 13:4041–4048

    Article  Google Scholar 

  • Hallick RB, Lipper C, Richards OC, Rutter WJ (1976) Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry 15:3039–3045

    Article  PubMed  CAS  Google Scholar 

  • Han CD, Coe EH Jr, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046

    PubMed  CAS  Google Scholar 

  • Hess W, Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Hoch B, Zeltz P, Hubschmann T, Kossel H, Borner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465

    PubMed  CAS  Google Scholar 

  • Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP (1998) Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205:506–513

    Article  CAS  Google Scholar 

  • Howe CJ, Purton S (2007) The little genome of apicomplexan plastids: its raison d’etre and a possible explanation for the “delayed death” phenomenon. Protist 158:121–133

    Article  PubMed  CAS  Google Scholar 

  • Hricova A, Quesada V, Micol JL (2006) The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Physiol 141:942–956

    Article  PubMed  CAS  Google Scholar 

  • Igloi G, Kössel H (1992) The transcriptional apparatus of chloroplasts. Crit Rev Plant Sci 10:525–558

    Article  CAS  Google Scholar 

  • Ingelsson B, Vener AV (2012) Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16. FEBS Lett 586:1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T (2005) A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J 42:133–144

    Article  PubMed  CAS  Google Scholar 

  • Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954

    Article  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748

    Article  PubMed  CAS  Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121

    Article  PubMed  CAS  Google Scholar 

  • Krause K (2011) Piecing together the puzzle of parasitic plant plastome evolution. Planta 234:647–656

    Article  PubMed  CAS  Google Scholar 

  • Krause K (2012) Plastid genomes of parasitic plants: a trail of reductions and losses. In: Bullerwell C (ed) Organelle genetics: evolution of organelle genomes and gene expression. Springer, Berlin

    Google Scholar 

  • Krause K, Krupinska K (2000) Molecular and functional properties of highly purified transcriptionally active chromosomes from spinach chloroplasts. Physiol Plant 109:188–195

    Article  CAS  Google Scholar 

  • Krause K, Maier RM, Kofer W, Krupinska K, Herrmann RG (2000) Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gen Genet 263:1022–1030

    Article  PubMed  CAS  Google Scholar 

  • Lane CE, Archibald JM (2008) The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol 23:268–275

    Article  PubMed  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (“saprophytic”) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188

    Article  PubMed  CAS  Google Scholar 

  • Legen J, Wanner G, Herrmann RG, Small I, Schmitz-Linneweber C (2007) Plastid tRNA genes trnC-GCA and trnN-GUU are essential for plant cell development. Plant J 51:751–762

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kleine T (2011) Role of intercompartmental DNA transfer in producing genetic diversity. Int Rev Cell Mol Biol 291:73–114

    Article  PubMed  CAS  Google Scholar 

  • Liere K, Weihe A, Borner T (2011) The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J Plant Physiol 168:1345–1360

    Article  PubMed  CAS  Google Scholar 

  • Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 365:749–763

    Article  PubMed  CAS  Google Scholar 

  • Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    Article  PubMed  Google Scholar 

  • Loschelder H, Schweer J, Link B, Link G (2006) Dual temporal role of plastid sigma factor 6 in Arabidopsis development. Plant Physiol 142:642–650

    Article  PubMed  CAS  Google Scholar 

  • Lung B, Zemann A, Madej MJ, Schuelke M, Techritz S, Ruf S, Bock R, Hüttenhofer A (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–3852

    Article  PubMed  CAS  Google Scholar 

  • Maeder C, Draper DE (2005) A small protein unique to bacteria organizes rRNA tertiary structure over an extensive region of the 50 S ribosomal subunit. J Mol Biol 354:436–446

    Article  PubMed  CAS  Google Scholar 

  • Maguire BA, Wild DG (1997) The roles of proteins L28 and L33 in the assembly and function of Escherichia coli ribosomes in vivo. Mol Microbiol 23:237–245

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158:156–189

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Kuroiwa H, Kuroiwa T, Kita K, Nozaki H (2008) A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Mol Biol Evol 25:1167–1179

    Article  PubMed  CAS  Google Scholar 

  • McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (2007) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57

    Article  PubMed  CAS  Google Scholar 

  • Melonek J, Matros A, Trösch M, Mock H-P, Krupinska K (2012) The core of chloroplast nucleoids contains architectural SWIB-domain proteins. Plant Cell 24(7):3060–3073

    Article  PubMed  CAS  Google Scholar 

  • Merckx V, Freudenstein JV (2010) Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytol 185:605–609

    Article  PubMed  Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313

    Article  PubMed  CAS  Google Scholar 

  • Myouga F, Akiyama K, Motohashi R, Kuromori T, Ito T, Iizumi H, Ryusui R, Sakurai T, Shinozaki K (2010) The Chloroplast Function Database: a large-scale collection of Arabidopsis Ds/Spm- or T-DNA-tagged homozygous lines for nuclear-encoded chloroplast proteins, and their systematic phenotype analysis. Plant J 61:529–542

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140

    Article  PubMed  CAS  Google Scholar 

  • Nickrent DL, Ouyang Y, Duff RJ, dePhamphilis CW (1997) Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol 34:717–729

    Article  PubMed  CAS  Google Scholar 

  • Peled-Zehavi H, Danon A (2007) Translation and translational regulation in chloroplasts. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Berlin, pp 249–281

    Chapter  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and −12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  PubMed  CAS  Google Scholar 

  • Pombert J-F, Keeling PJ (2010) The mitochondrial genome of the entomoparasitic green alga helicosporidium. PLoS One 5:e8954

    Article  PubMed  CAS  Google Scholar 

  • Privat I, Hakimi MA, Buhot L, Favory JJ, Mache-Lerbs S (2003) Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant Mol Biol 51:385–399

    Article  PubMed  CAS  Google Scholar 

  • Revill MJ, Stanley S, Hibberd JM (2005) Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 56:2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae. Mol Biol Evol 24:2358–2361

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008a) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    Article  PubMed  CAS  Google Scholar 

  • Rogalski M, Schottler MA, Thiele W, Schulze WX, Bock R (2008b) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20(8):2221–2237, tpc.108.060392

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117

    Article  PubMed  CAS  Google Scholar 

  • Schneider A (2011) Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem 80:1033–1053

    Article  PubMed  CAS  Google Scholar 

  • Schroter Y, Steiner S, Matthai K, Pfannschmidt T (2010) Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 10:2191–2204

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genomics 277:631–646

    Article  PubMed  CAS  Google Scholar 

  • Schweer J, Turkeri H, Link B, Link G (2010) AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation. Plant J 62:192–202

    Article  PubMed  CAS  Google Scholar 

  • Sharma MR, Wilson DN, Datta PP, Barat C, Schluenzen F, Fucini P, Agrawal RK (2007) Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci USA 104(49):19315–19320

    Article  PubMed  CAS  Google Scholar 

  • Steiner S, Schroter Y, Pfalz J, Pfannschmidt T (2011) Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiol 157:1043–1055

    Article  PubMed  CAS  Google Scholar 

  • Tartar A, Boucias DG (2004) The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome. FEMS Microbiol Lett 233:153–157

    Article  PubMed  CAS  Google Scholar 

  • Tiller N, Weingartner M, Thiele W, Maximova E, Schottler MA, Bock R (2012) The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins. Plant J 69:302–316

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Fujimoto M, Arimura S, Murata J, Tsutsumi N, Kadowaki K (2007) Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus. Gene 402:51–56

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 25:1566–1575

    Article  PubMed  CAS  Google Scholar 

  • van der Kooij TA, Krause K, Dorr I, Krupinska K (2000) Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210:701–707

    Article  PubMed  Google Scholar 

  • Wagner R, Pfannschmidt T (2006) Eukaryotic transcription factors in plastids – bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381:62–70

    Article  PubMed  CAS  Google Scholar 

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Roy-Chowdhury S, Allison LA (2003) AtSig5 is an essential nucleus-encoded Arabidopsis sigma-like factor. Plant Physiol 132:739–747

    Article  PubMed  CAS  Google Scholar 

  • Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S (2007) Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res 35:455–464

    Article  PubMed  CAS  Google Scholar 

  • Zhelyazkova P, Sharma CM, Forstner KU, Liere K, Vogel J, Borner T (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Day A (1998) Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J 15:265–271

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A. Tooming-Klunderud (Norwegian High-Throughput Sequencing Centre, University of Oslo, Norway) is thanked for 454 sequence generation of Cuscuta ESTs. Dr. R. Schwacke (Tromsø, Norway) and J. Hollmann (University of Kiel, Germany) are thanked for helping with bioinformatic evaluation of transcriptome data. We thank Prof. I. Dörr and Dr. T. van der Kooij for sharing their electron micrographs of Cuscuta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krause, K., Scharff, L.B. (2014). Reduced Genomes from Parasitic Plant Plastids: Templates for Minimal Plastomes?. In: Lüttge, U., Beyschlag, W., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38797-5_3

Download citation

Publish with us

Policies and ethics