Skip to main content

Mechanical DNA Devices

  • Chapter
  • First Online:
Nucleic Acid Nanotechnology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 29))

  • 2452 Accesses

Abstract

Natural molecular machines have been playing very significant roles in the world, which stimulated numerous efforts on the artificial molecular machines. DNA ambiguously is an ideal building block for the nanomechanical devices, because of many intriguing features. In this chapter, we first introduce the fundamental elements for understanding and implementing DNA-based nanomachines, such as fuels, dynamic behaviors, and the characterization methods. Furthermore, we describe the development of DNA nanomachines from simple constructs and operations to the sophisticated machinery systems concerning the coherent activation of multiple devices and configurational complexity. In the end, some important applications of DNA mechanical devices are discussed, including molecular transporting, organic synthesis, molecular sensing, and controlled drug delivery. Through this chapter, we aim to promote the fast advancement of the field of the nanomachines, which may push forward the multidisciplinary and interdisciplinary researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann D, Schmidt TL, Hannam JS, Purohit CS, Heckel A, Famulok M (2010) A double-stranded DNA rotaxane. Nat Nanotechnol 5:436–442

    Article  PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    Article  PubMed  CAS  Google Scholar 

  • Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M (2007) Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription. Nat Protoc 2:203–212

    Article  PubMed  CAS  Google Scholar 

  • Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed Engl 44:4358–4361

    Article  PubMed  CAS  Google Scholar 

  • Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422–4437

    Article  PubMed  CAS  Google Scholar 

  • Beissenhirtz MK, Willner I (2006) DNA-based machines. Org Biomol Chem 4:3392–3401

    Article  PubMed  CAS  Google Scholar 

  • Berna J, Leigh DA, Lubomska M, Mendoza SM, Perez EM, Rudolf P, Teobaldi G, Zerbetto F (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4:704–710

    Article  PubMed  CAS  Google Scholar 

  • Buranachai C, McKinney SA, Ha T (2006) Single molecule nanometronome. Nano Lett 6:496–500

    Article  PubMed  CAS  Google Scholar 

  • Champin B, Mobian P, Sauvage JP (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358–366

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Lee SH, Mao C (2004a) A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed Engl 43:5335–5338

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wang MS, Mao CD (2004b) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed Engl 43:3554–3557

    Article  PubMed  CAS  Google Scholar 

  • Cheng EJ, Xing YZ, Chen P, Yang Y, Sun YW, Zhou DJ, Xu LJ, Fan QH, Liu DS (2009) A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed Engl 48:7660–7663

    Article  PubMed  CAS  Google Scholar 

  • Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6:978–983

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314:1583–1585

    Article  PubMed  CAS  Google Scholar 

  • Ding BQ, Wu H, Xu W, Zhao ZA, Liu Y, Yu HB, Yan H (2010) Interconnecting gold Islands with DNA origami nanotubes. Nano Lett 10:5065–5069

    Article  CAS  Google Scholar 

  • Dittmer WU, Simmel FC (2004) Transcriptional control of DNA-based nanomachines. Nano Lett 4:689–691

    Article  CAS  Google Scholar 

  • Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed Engl 43:3550–3553

    Article  PubMed  CAS  Google Scholar 

  • Elbaz J, Moshe M, Willner I (2009a) Coherent activation of DNA tweezers: a “SET-RESET” logic system. Angew Chem Int Ed Engl 48:3834–3837

    Article  PubMed  CAS  Google Scholar 

  • Elbaz J, Wang ZG, Orbach R, Willner I (2009b) pH-Stimulated concurrent mechanical activation of two DNA “tweezers”. A “SET-RESET” logic gate system. Nano Lett 9:4510–4514

    Article  PubMed  CAS  Google Scholar 

  • Elbaz J, Tel-Vered R, Freeman R, Yildiz HB, Willner I (2009c) Switchable motion of DNA on solid supports. Angew Chem Int Ed Engl 48:133–137

    Article  PubMed  CAS  Google Scholar 

  • Elbaz J, Wang ZG, Wang F, Willner I (2012) Programmed dynamic topologies in DNA catenanes. Angew Chem Int Ed Engl 51:2349–2353

    Article  PubMed  CAS  Google Scholar 

  • Fahlman RP, Hsing M, Sporer-Tuhten CS, Sen D (2003) Duplex pinching: a structural switch suitable for contractile DNA nanoconstructions. Nano Lett 3:1073–1078

    Article  CAS  Google Scholar 

  • Fang L, Olson MA, Benitez D, Tkatchouk E, Goddard WA, Stoddart JF (2010) Mechanically bonded macromolecules. Chem Soc Rev 39:17–29

    Article  PubMed  CAS  Google Scholar 

  • Fisher ME, Kolomeisky AB (2001) Simple mechanochemistry describes the dynamics of kinesin molecules. Proc Natl Acad Sci USA 98:7748–7753

    Article  PubMed  CAS  Google Scholar 

  • Frasconi M, Tel-Vered R, Elbaz J, Willner I (2010) Electrochemically stimulated pH changes: a route to control chemical reactivity. J Am Chem Soc 132:2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Vandenbos AJ, Fujiwara T (2007) Spiropyran dimer toward photo-switchable molecular machine. Chem Mater 19:644–646

    Article  CAS  Google Scholar 

  • Gartner ZJ, Liu DR (2001) The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J Am Chem Soc 123:6961–6963

    Article  PubMed  CAS  Google Scholar 

  • Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96

    Article  PubMed  CAS  Google Scholar 

  • Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101

    Article  PubMed  CAS  Google Scholar 

  • Gruenwedel DW (1994) The mercury(II) and high-salt-induced conformational B-Z transitions of Poly[d(G-m5C).d(G-m5C)] as studied by non-polarized (ultraviolet) and circularly-polarized (CD) ultraviolet spectroscopy. Eur J Biochem 219:491–496

    Article  PubMed  CAS  Google Scholar 

  • Gruenwedel DW, Cruikshank MK (1991) Changes in poly[D(T-G).D(C-A)] chirality due to Hg(II)-Binding – circular-dichroism (CD) Studies. J Inorg Biochem 43:29–36

    Article  PubMed  CAS  Google Scholar 

  • Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–205

    Article  PubMed  CAS  Google Scholar 

  • Han DR, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5:712–717

    Article  PubMed  CAS  Google Scholar 

  • Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  PubMed  CAS  Google Scholar 

  • He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5:778–782

    Article  PubMed  CAS  Google Scholar 

  • He Y, Liu DR (2011) A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J Am Chem Soc 133:9972–9975

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y, Wen LP, Wang L, Cao LX, Yang Y, Xue JM, Song YL, Wang YG, Liu DS, Jiang L (2009) A biomimetic potassium responsive nanochannel: G-Quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131:7800–7805

    Article  PubMed  CAS  Google Scholar 

  • Hudson B, Vinograd J (1967) Catenated circular DNA molecules in Hela cell mitochondria. Nature 216:647–652

    Article  PubMed  CAS  Google Scholar 

  • Jovin TM, Soumpasis DM, Mcintosh LP (1987) The transition between B-DNA and Z-DNA. Annu Rev Phys Chem 38:521–560

    Article  CAS  Google Scholar 

  • Kang HZ, Liu HP, Phillips JA, Cao ZH, Kim Y, Chen Y, Yang ZY, Li JW, Tan WH (2009) Single-DNA molecule nanomotor regulated by photons. Nano Lett 9:2690–2696

    Article  PubMed  CAS  Google Scholar 

  • Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE (2008) Single-molecule cut-and-paste surface assembly. Science 319:594–596

    Article  PubMed  CAS  Google Scholar 

  • Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat Commun 2:1–8

    Article  Google Scholar 

  • Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533

    Article  PubMed  CAS  Google Scholar 

  • Li JWJ, Tan WH (2002) A single DNA molecule nanomotor. Nano Lett 2:315–318

    Article  CAS  Google Scholar 

  • Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed Engl 47:3927–3931

    Article  PubMed  CAS  Google Scholar 

  • Liedl T, Olapinski M, Simmel FC (2006) A surface-bound DNA switch driven by a chemical oscillator. Angew Chem Int Ed Engl 45:5007–5010

    Article  PubMed  CAS  Google Scholar 

  • Liu DS, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed Engl 42:5734–5736

    Article  PubMed  CAS  Google Scholar 

  • Liu DS, Bruckbauer A, Abell C, Balasubramanian S, Kang DJ, Klenerman D, Zhou DJ (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128:2067–2071

    Article  PubMed  CAS  Google Scholar 

  • Liu HJ, Xu Y, Li FY, Yang Y, Wang WX, Song YL, Liu DS (2007) Light-driven conformational switch of i-motif DNA. Angew Chem Int Ed Engl 46:2515–2517

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Kuzuya A, Sha RJ, Guillaume J, Wang RS, Canary JW, Seeman NC (2008) Coupling across a DNA helical turn yields a hybrid DNA/organic catenane doubly tailed with functional termini. J Am Chem Soc 130:10882-+

    PubMed  CAS  Google Scholar 

  • Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei RJ, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  PubMed  CAS  Google Scholar 

  • Mao CD, Sun WQ, Shen ZY, Seeman NC (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397:144–146

    Article  PubMed  CAS  Google Scholar 

  • Mao YD, Liu DS, Wang ST, Luo SN, Wang WX, Yang YL, Qi QY, Lei J (2007) Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Res 35:e33

    Article  PubMed  Google Scholar 

  • Marini M, Piantanida L, Musetti R, Bek A, Dong MD, Besenbacher F, Lazzarino M, Firrao G (2011) A revertible, autonomous, self-assembled DNA-origami nanoactuator. Nano Lett 11:5449–5454

    Article  PubMed  CAS  Google Scholar 

  • McKee ML, Milnes PJ, Bath J, Stulz E, Turberfield AJ, O’Reilly RK (2010) Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew Chem Int Ed Engl 49:7948–7951

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi D, Karimata H, Wang ZM, Koumoto K, Sugimoto N (2007) Artificial G-wire switch with 2,2′-bipyridine units responsive to divalent metal ions. J Am Chem Soc 129:5919–5925

    Article  PubMed  CAS  Google Scholar 

  • Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4:325–330

    Article  PubMed  CAS  Google Scholar 

  • Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11:982–987

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara S, Maeda M (2009) Reversible photoswitching of a G-quadruplex. Angew Chem Int Ed Engl 48:6671–6674

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Nishimura T, Tanida J (2009) Self-contained photonically-controlled DNA tweezers. Appl Phys Express 2:025004

    Article  Google Scholar 

  • Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA brownian motor with coordinated legs. Science 324:67–71

    Article  PubMed  CAS  Google Scholar 

  • Qian LL, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y, Liu Q, Fan CH, Hu J, He L (2006) Analogic China map constructed by DNA. Chin Sci Bull 51:2973–2976

    Article  CAS  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Stoddart JF (2007) Photo-driven molecular devices. Chem Soc Rev 36:77–92

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TL, Heckel A (2011) Construction of a structurally defined double-stranded DNA catenane. Nano Lett 11:1739–1742

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC (2010) Structural DNA nanotechnology: growing along with nano letters. Nano Lett 10:1971–1978

    Article  PubMed  CAS  Google Scholar 

  • Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    Article  CAS  Google Scholar 

  • Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835

    Article  PubMed  CAS  Google Scholar 

  • Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc 129:3814–3815

    Article  PubMed  CAS  Google Scholar 

  • Shu WM, Liu DS, Watari M, Riener CK, Strunz T, Welland ME, Balasubramanian S, McKendry RA (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127:17054–17060

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Mao CD (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126:11410–11411

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, He Y, Chen Y, Yin P, Mao CD (2005) Molecular devices-A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed Engl 44:4355–4358

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  PubMed  CAS  Google Scholar 

  • Vallee R (1993) Molecular analysis of the microtubule motor dynein. Proc Natl Acad Sci USA 90:8769–8772

    Article  PubMed  CAS  Google Scholar 

  • van Delden RA, ter Wiel MKJ, Pollard MM, Vicario J, Koumura N, Feringa BL (2005) Unidirectional molecular motor on a gold surface. Nature 437:1337–1340

    Article  PubMed  Google Scholar 

  • van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336

    Article  PubMed  Google Scholar 

  • Venkataraman S, Dirks RM, Rothemund PWK, Winfree E, Pierce NA (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494

    Article  PubMed  Google Scholar 

  • von Delius M, Geertsema EM, Leigh DA (2010) A synthetic small molecule that can walk down a track. Nat Chem 2:96–101

    Article  Google Scholar 

  • Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    Article  PubMed  CAS  Google Scholar 

  • Wang ST, Liu HJ, Liu DS, Ma XY, Fang XH, Jiang L (2007) Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed Engl 46:3915–3917

    Article  PubMed  CAS  Google Scholar 

  • Wang XL, Huang J, Zhou YY, Yan SY, Weng XC, Wu XJ, Deng MG, Zhou XA (2010a) Conformational switching of G-quadruplex DNA by photoregulation. Angew Chem Int Ed Engl 49:5305–5309

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Elbaz J, Remacle F, Levine RD, Willner I (2010b) All-DNA finite-state automata with finite memory. Proc Natl Acad Sci USA 107:21996–22001

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Elbaz J, Willner I (2011) DNA machines: bipedal walker and stepper. Nano Lett 11:304–309

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Elbaz J, Willner I (2012) A dynamically programmed DNA transporter. Angew Chem Int Ed Engl 51(18):4322–4326

    Article  PubMed  CAS  Google Scholar 

  • Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed Engl 45:7384–7388

    Article  PubMed  CAS  Google Scholar 

  • Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169

    Article  PubMed  CAS  Google Scholar 

  • Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW, Wang L, Song YL, Ji H, Qi OY, Wang YG, Jiang L (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130:8345–8350

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Hirao Y, Nishimura Y, Sugiyama H (2007) I-motif and quadruplex-based device that can control a protein release or bind and release small molecule to influence biological processes. Bioorg Med Chem 15:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Zhang XP, Shen ZY, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65

    Article  PubMed  CAS  Google Scholar 

  • Yang XP, Vologodskii AV, Liu B, Kemper B, Seeman NC (1998) Torsional control of double-stranded DNA branch migration. Biopolymers 45:69–83

    Article  PubMed  CAS  Google Scholar 

  • Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed Engl 43:4906–4911

    Article  PubMed  CAS  Google Scholar 

  • Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Zhang YF, Chen Y, Wang RW, Du CL, Yasun E, Tan WH (2011) Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors. Proc Natl Acad Sci USA 108:9331–9336

    Article  PubMed  CAS  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  PubMed  CAS  Google Scholar 

  • Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Seeman NC (2006) RNA used to control a DNA rotary nanomachine. Nano Lett 6:2899–2903

    Article  PubMed  CAS  Google Scholar 

  • Zhou MG, Liang XG, Mochizuki T, Asanuma H (2010) A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. Angew Chem Int Ed Engl 49:2167–2170

    Article  PubMed  CAS  Google Scholar 

  • Zhu CF, Wen YQ, Li D, Wang LH, Song SP, Fan CH, Willner I (2009) Inhibition of the In vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. Chemistry 15:11898–11903

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, ZG., Ding, B. (2014). Mechanical DNA Devices. In: Kjems, J., Ferapontova, E., Gothelf, K. (eds) Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38815-6_8

Download citation

Publish with us

Policies and ethics