Skip to main content

Sparse Projections of Medical Images onto Manifolds

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

Manifold learning has been successfully applied to a variety of medical imaging problems. Its use in real-time applications requires fast projection onto the low-dimensional space. To this end, out-of-sample extensions are applied by constructing an interpolation function that maps from the input space to the low-dimensional manifold. Commonly used approaches such as the Nyström extension and kernel ridge regression require using all training points. We propose an interpolation function that only depends on a small subset of the input training data. Consequently, in the testing phase each new point only needs to be compared against a small number of input training data in order to project the point onto the low-dimensional space. We interpret our method as an out-of-sample extension that approximates kernel ridge regression. Our method involves solving a simple convex optimization problem and has the attractive property of guaranteeing an upper bound on the approximation error, which is crucial for medical applications. Tuning this error bound controls the sparsity of the resulting interpolation function. We illustrate our method in two clinical applications that require fast mapping of input images onto a low-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. AMS (1950)

    Google Scholar 

  2. Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning (2012)

    Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences (2009)

    Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS (2002)

    Google Scholar 

  5. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. In: NIPS (2004)

    Google Scholar 

  6. Bhatia, K.K., Rao, A., Price, A.N., Wolz, R., Hajnal, J., Rueckert, D.: Hierarchical manifold learning. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 512–519. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Cawley, G.C., Talbot, N.L.C.: Reduced rank kernel ridge regression. Neural Processing Letters (2002)

    Google Scholar 

  8. Donoho, D.L., Grimes, C.: Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data. PNAS (2003)

    Google Scholar 

  9. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: NIPS (1997)

    Google Scholar 

  10. Georg, M., Souvenir, R., Hope, A., Pless, R.: Manifold learning for 4d ct reconstruction of the lung. In: CVPR Workshops (2008)

    Google Scholar 

  11. Gerber, S., Tasdizen, T., Joshi, S., Whitaker, R.: On the manifold structure of the space of brain images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 305–312. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Hamm, J., Davatzikos, C., Verma, R.: Efficient large deformation registration via geodesics on a learned manifold of images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 680–687. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A comparative review. Tilburg University Technical Report (2008)

    Google Scholar 

  14. Natarajan, B.K.: Sparse Approximate Solutions to Linear Systems. SIAM J. Comput. (1995)

    Google Scholar 

  15. Rohde, G.K., Wang, W., Peng, T., Murphy, R.F.: Deformation-based nonlinear dimension reduction: Applications to nuclear morphometry. In: ISBI (2008)

    Google Scholar 

  16. Rohlfing, T., Maurer Jr., C.R., O’Dell, W.G., Zhong, J.: Modeling liver motion and deformation during the respiratory cycle using intensity-based free-form registration of gated MR images. In: Medical Imaging: Visualization, Display, and Image-Guided Procedures (2001)

    Google Scholar 

  17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science (2000)

    Google Scholar 

  18. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: ICML (1998)

    Google Scholar 

  19. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2001)

    Google Scholar 

  20. Suzuki, K., Zhang, J., Xu, J.: Massive-training artificial neural network coupled with laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in ct colonography. IEEE TMI (2010)

    Google Scholar 

  21. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science (2000)

    Google Scholar 

  22. Wachinger, C., Mateus, D., Keil, A., Navab, N.: Manifold learning for patient position detection in MRI. In: ISBI (2010)

    Google Scholar 

  23. Wachinger, C., Yigitsoy, M., Navab, N.: Manifold learning for image-based breathing gating with application to 4D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 26–33. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Zhang, Q., Souvenir, R., Pless, R.: On Manifold Structure of Cardiac MRI Data: Application to Segmentation. In: CVPR (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, G.H., Wachinger, C., Golland, P. (2013). Sparse Projections of Medical Images onto Manifolds. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics