Skip to main content

Predicting Cognitive Data from Medical Images Using Sparse Linear Regression

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

We present a new framework for predicting cognitive or other continuous-variable data from medical images. Current methods of probing the connection between medical images and other clinical data typically use voxel-based mass univariate approaches. These approaches do not take into account the multivariate, network-based interactions between the various areas of the brain and do not give readily interpretable metrics that describe how strongly cognitive function is related to neuroanatomical structure. On the other hand, high-dimensional machine learning techniques do not typically provide a direct method for discovering which parts of the brain are used for making predictions. We present a framework, based on recent work in sparse linear regression, that addresses both drawbacks of mass univariate approaches, while preserving the direct spatial interpretability that they provide. In addition, we present a novel optimization algorithm that adapts the conjugate gradient method for sparse regression on medical imaging data. This algorithm produces coefficients that are more interpretable than existing sparse regression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. NeuroImage 11(6 pt. 1), 805–821 (2000); PMID: 10860804

    Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Batmanghelich, N., Taskar, B., Davatzikos, C.: A general and unifying framework for feature construction, in image-based pattern classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 423–434. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bertsekas, D.: On the goldstein-levitin-polyak gradient projection method. IEEE Transactions on Automatic Control 21(2), 174–184 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  7. Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical thickness measurement. NeuroImage 45(3), 867–879 (2009); PMID: 19150502

    Google Scholar 

  8. Davatzikos, C., Resnick, S.M., Wu, X., Parmpi, P., Clark, C.M.: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 41(4), 1220–1227 (2008)

    Article  Google Scholar 

  9. Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1), 17–20 (2004)

    Article  Google Scholar 

  10. Donoho, D.L.: De-noising by soft-thresholding. IEEE Transactions on Information Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. The Annals of Statistics 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franke, K., Ziegler, G., Klöppel, S., Gaser, C.: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage 50(3), 883–892 (2010)

    Article  Google Scholar 

  14. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1 (2010)

    Google Scholar 

  15. Ganesh, G., Burdet, E., Haruno, M., Kawato, M.: Sparse linear regression for reconstructing muscle activity from human cortical fMRI. NeuroImage 42(4), 1463–1472 (2008)

    Article  Google Scholar 

  16. Goldstein, A.A.: Convex programming in Hilbert space. Bulletin of the American Mathematical Society 70(5), 709–710 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, H., Lee, D.S., Kang, H., Kim, B.-N., Chung, M.K.: Sparse brain network recovery under compressed sensing. IEEE Transactions on Medical Imaging 30(5), 1154–1165

    Google Scholar 

  18. Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., Mellits, E.D., Clark, C.: The consortium to establish a registry for Alzheimer’s disease (CERAD). Part i. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39(9), 1159–1165 (1989); PMID: 2771064

    Google Scholar 

  19. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. Journal of Optimization Theory and Applications 92(1), 1–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(1), 91–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  25. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE 98(6), 948–958 (2010)

    Article  Google Scholar 

  26. Wang, B., Pham, T.D.: MRI-based age prediction using hidden markov models. Journal of Neuroscience Methods 199(1), 140–145 (2011)

    Article  Google Scholar 

  27. Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3), 515–534 (1937); PMID: 19377034

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kandel, B.M., Wolk, D.A., Gee, J.C., Avants, B. (2013). Predicting Cognitive Data from Medical Images Using Sparse Linear Regression. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics