Skip to main content

A Graph Parameter That Matches the Resilience of the Certified Propagation Algorithm

  • Conference paper
Ad-hoc, Mobile, and Wireless Network (ADHOC-NOW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7960))

Included in the following conference series:

Abstract

We consider the Secure Broadcast problem in incomplete networks. We study the resilience of the Certified Propagation Algorithm (CPA), which is particularly suitable for ad hoc networks. We address the issue of determining the maximum number of corrupted players \(t^{\rm CPA}_{\rm max}\) that CPA can tolerate under the t-locally bounded adversary model, in which the adversary may corrupt at most t players in each player’s neighborhood. For any graph G and dealer-node D we provide upper and lower bounds on \(t^{\rm CPA}_{\rm max}\) that can be efficiently computed in terms of a graph theoretic parameter that we introduce in this work. Along the way we obtain an efficient 2-approximation algorithm for \(t^{\rm CPA}_{\rm max}\). We further introduce two more graph parameters, one of which matches \(t^{\rm CPA}_{\rm max}\) exactly.

Work supported by ALGONOW project of the Research Funding Program THALIS, co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dolev, D.: The byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993), http://doi.acm.org/10.1145/138027.138036

    Article  MathSciNet  MATH  Google Scholar 

  3. Franklin, M., Wright, R.N.: Secure communication in minimal connectivity models. Journal of Cryptology 13, 9–30 (2000), http://dx.doi.org/10.1007/s001459910002

    Article  MathSciNet  MATH  Google Scholar 

  4. Garay, J.A., Moses, Y.: Fully polynomial byzantine agreement for n > 3t processors in t + 1 rounds. SIAM J. Comput. 27(1), 247–290 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ichimura, A., Shigeno, M.: A new parameter for a broadcast algorithm with locally bounded byzantine faults. Inf. Process. Lett. 110(12-13), 514–517 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 275–282. ACM (2004)

    Google Scholar 

  7. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks. Journal of Algorithms 39(1), 47–67 (2001), http://www.sciencedirect.com/science/article/pii/S0196677400911477

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure communication over arbitrary networks. In: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, PODC 2002, pp. 193–202. ACM, New York (2002), http://doi.acm.org/10.1145/571825.571858

    Chapter  Google Scholar 

  9. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  10. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tseng, L., Vaidya, N.H., Bhandari, V.: Broadcast using certified propagation algorithm in presence of byzantine faults. CoRR abs/1209.4620 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Litsas, C., Pagourtzis, A., Sakavalas, D. (2013). A Graph Parameter That Matches the Resilience of the Certified Propagation Algorithm. In: Cichoń, J., Gȩbala, M., Klonowski, M. (eds) Ad-hoc, Mobile, and Wireless Network. ADHOC-NOW 2013. Lecture Notes in Computer Science, vol 7960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39247-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39247-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39246-7

  • Online ISBN: 978-3-642-39247-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics