Skip to main content

The Minkowski Geometry of Numbers Applied to the Theory of Tone Systems

  • Conference paper
Mathematics and Computation in Music (MCM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7937))

Included in the following conference series:

Abstract

Euler’s speculum musicum is a finite selection of tones from the two dimensional tone lattice known as the Tonnetz. The idea of representing larger or smaller collections of tones as finite subsets of the Tonnetz reappears in the scholarly discourse in various contexts. However, formal rules for such selections that would satisfactorily reflect musical reality are not known: those proposed in the past are either too restrictive (not allowing all musically relevant tone systems to enter the model) or too loose (not preventing musically irrelevant tone systems from entering the model). The paper offers a formal framework that yields selections satisfactorily reflecting the musical reality. The framework draws methods from the Minkowski geometry of numbers. It is shown that only selection bodies of very specific shapes called (skewed) selection polygons lead to relevant selections. Manifold music-theoretical examples include chromatic, superchromatic, and subchromatic tone systems.

This paper was supported by EURIAS Junior Fellowship at NIAS awarded to the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour, J.M.: Tuning and Temperament: A Historical Survey. Michigan State College Press, East Lansing (1951)

    Google Scholar 

  2. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer Classics in Mathematics. Springer (1997) (reprint of 1959 and 1971 Springer-Verlag editions)

    Google Scholar 

  3. Clampitt, D.: Pairwise Well-Formed Scales: Structural and Transformational Properties. PhD dissertation. State University of New York at Buffalo (1997)

    Google Scholar 

  4. Clough, J., Douthett, J.: Maximally Even Sets. Journal of Music Theory 35, 93–173 (1991)

    Article  Google Scholar 

  5. Douthett, J., Steinbach, P.: Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition. Journal of Music Theory 42(2), 241–263 (1998)

    Article  Google Scholar 

  6. Erlich, P.: A gentle introduction to Fokker periodicity blocks (1999), http://www.tonalsoft.com/enc/f/fokker-gentle-1.aspx

  7. Euler, L.: De harmoniae veris principiis per speculum musicum repraesentatis. In: Novi Commentarii academiae scientiarum Petropolitanae, vol. 18, pp. 330–353. Teubner, St. Petersburg (1744)

    Google Scholar 

  8. Fokker, A.D.: Selections from the Harmonic Lattice of Perfect Fifths and Major Thirds Containing 12, 19, 22, 31, 41 or 53 Notes. In: Proceedings of KNAW, Series B, vol. 71, pp. 251–266. KNAW, Amsterdam (1968)

    Google Scholar 

  9. Fokker, A.D.: Unison Vectors and Periodicity Blocks in the Three-Dimensional (3-5-7-) Harmonic Lattice of Notes. In: Proceedings of KNAW, Series B, vol. 72(3), pp. 153–168. KNAW, Amsterdam (1969)

    Google Scholar 

  10. Hancock, H.: Development of the Minkowski Geometry of Numbers. Macmillan (1939) (Republished in 1994 by Dover)

    Google Scholar 

  11. Honingh, A.: The Origin and Well-Formedness of Tonal Pitch Structures. Institute for Logic, Language and Computation, Amsterdam (2006)

    Google Scholar 

  12. Honingh, A., Bod, R.: Convexity and the Well-formedness of Musical Objects. Journal of New Music Research 34, 293–303 (2005)

    Article  Google Scholar 

  13. Hook, J.: Spelled Heptachords. In: Agon, C., et al. (eds.) Mathematics and Computation in Music 2011, pp. 84–97. Springer, Berlin (2011)

    Chapter  Google Scholar 

  14. Conway, J., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  15. Mazzola, G.: The Topos of Music: Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)

    Google Scholar 

  16. Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1910)

    Google Scholar 

  17. Noll, T.: Morphologische Grundlagen der abendländischen Harmonik. (Musikometrika 7.) Brockmeyer, Bochum (1997)

    Google Scholar 

  18. Oettingen, A.V.: Die Grundlage der Musikwissenschaft und das duale Reininstrument. Abhandllungen der mathematisch-physischen Klasse der Königl. Sächsischen Gesellschaft der Wissenschaften 34(2), Leipzig (1916)

    Google Scholar 

  19. Tanaka, S.: Studien im Gebiete der reinen Stimmung. In: Chrysander, F., Spitta, P., Adler, G. (eds.) Vierteljahrsschrift für Musikwissenschaft, vol. 6, pp. 1–90. Breitkopf und Härtel, Leipzig (1890)

    Google Scholar 

  20. Tymoczko, D.: Scale Networks and Debussy. Journal of Music Theory 48, 219–294 (2004)

    Article  Google Scholar 

  21. Waller, D.A.: Some Combinatorial Aspects of the Musical Chords. The Mathematical Gazette 62, 12–15 (1978)

    Article  Google Scholar 

  22. Wild, J.: Pairwise Well-Formed Scales and a Bestiary of Animals on the Hexagonal Lattice. In: Chew, E., et al. (eds.) Mathematics and Computation in Music 2009, pp. 273–285. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Žabka, M.: Well-Formedness in Two Dimensions: A Generalization of Carey and Clampitt’s Theorem. Journal of Mathematics and Music 4(1), 1–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Žabka, M.: Non-enharmonic Diatonic Theory. In: Paper read at Clough Memorial Conference. Yale University (June 13, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Žabka, M. (2013). The Minkowski Geometry of Numbers Applied to the Theory of Tone Systems. In: Yust, J., Wild, J., Burgoyne, J.A. (eds) Mathematics and Computation in Music. MCM 2013. Lecture Notes in Computer Science(), vol 7937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39357-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39357-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39356-3

  • Online ISBN: 978-3-642-39357-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics