Skip to main content

Placing Limits on the Stochastic Gravitational-Wave Background Using European Pulsar Timing Array Data

  • Chapter
  • First Online:
Gravitational Wave Detection and Data Analysis for Pulsar Timing Arrays

Part of the book series: Springer Theses ((Springer Theses))

  • 943 Accesses

Abstract

Direct detection of low-frequency gravitational waves (\(10^{-9}-10^{-8}\) Hz) is the main goal of pulsar timing array (PTA) projects. One of the main targets for the PTAs is to measure the stochastic background of gravitational waves (GWB) whose characteristic strain is expected to approximately follow a power-law of the form \(h_c(f)=A (f/\hbox {yr}^{-1})^{\alpha }\), where \(f\) is the gravitational-wave frequency. In this chapter we use the current data from the European PTA to determine an upper limit on the GWB amplitude \(A\) as a function of the unknown spectral slope \(\alpha \) with a Bayesian inference method, by modelling the GWB as a random Gaussian process. For the case \(\alpha =-2/3\), which is expected if the GWB is produced by supermassive black-hole binaries, we obtain a 95% confidence upper limit on \(A\) of \(6\times 10^{-15}\), which is \(1.8\) times lower than the 95% confidence GWB limit obtained by the Parkes PTA in 2006. Our approach to the data analysis incorporates the multi-telescope nature of the European PTA and thus can serve as a useful template for future intercontinental PTA collaborations.

The most beautiful thing we can experience is the mysterious.

It is the source of all true art and all science. He to whom this

emotion is a stranger, who can no longer pause to wonder and

stand rapt in awe, is as good as dead: his eyes are closed.

Albert Einstein.

This chapter is adapted from: R. van Haasteren et al. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data MNRAS (2011) 414(4): 3117-3128 By permission of Oxford University Press on behalf of the Royal Astronomical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The SRT is expected to become operational in 2011 (Tofani et al. 2008).

  2. 2.

    Qualitatively, experienced observers are rightfully so very confident in their timing solutions. Quantitatively however, the only statistical tool currently available for observers to check whether the timing solution is reasonable is the reduced \(\chi ^2\) statistic. But since the error bars obtained with the cross-correlation technique cannot be fully trusted, the same holds for the \(\chi ^2\) statistic.

  3. 3.

    We note that, although such a detection is consistent with a GWB, we would need more pulsars to exclude the possibility that some other effect is causing the correlated signal we detect here.

  4. 4.

    The model for the GWB that Sesana et al. (2008) use is a broken power-law. Their \(h_{\text {1yr}}\) therefore has a slightly different meaning, and our quoted value should be taken as a crude approximation.

References

  • Anholm M., Ballmer S., Creighton J. D. E., Price L. R., Siemens X., 2009, Phys. Rev. D, 79, 8.

    Article  Google Scholar 

  • Begelman M. C., Blandford R. D., Rees M. J., 1980, Nature, 287, 307.

    Article  ADS  Google Scholar 

  • Cordes J. M., Shannon R. M., 2010, e-print arXiv:1010:3785v1.

    Google Scholar 

  • Damour T., Vilenkin A., 2005, Phys. Rev. D, 71, 063510.

    Article  ADS  Google Scholar 

  • Demorest P. B., 2007, PhD thesis, University of California, Berkeley.

    Google Scholar 

  • Detweiler S., 1979, ApJ, 234, 1100.

    Article  ADS  Google Scholar 

  • Estabrook F., Wahlquist H., 1975, Gen. Relativ. Gravitaion, 6, 439.

    Article  ADS  Google Scholar 

  • Ferdman R. D., van Haasteren R., Bassa C. G., Burgay M., Cognard I., Corongiu A., D’Amico N., Desvignes G., Hessels J. W. T., Janssen G. H., Sanidas S., Smits R., Theureau G., 2010, Classical and Quantum Gravity, 27, 084014.

    Article  ADS  Google Scholar 

  • Foster R., Backer D., 1990, ApJ, 361, 300.

    Article  ADS  Google Scholar 

  • Grishchuk L. P., 2005, Uspekhi Fizicheskikh Nauk, 48, 1235.

    Article  Google Scholar 

  • Hellings R., Downs G., 1983, ApJ, 265, L39.

    Article  ADS  Google Scholar 

  • Hobbs G. B., Edwards R. T., 2006, TEMPO2 user manual, Version 2.0.

    Google Scholar 

  • Hobbs G. B., Edwards R. T., Manchester R. N., 2006, MNRAS, 369, 655.

    Article  ADS  Google Scholar 

  • Hobbs G. B., Bailes M., Bhat N. D. R., Burke-Spolaor S., Champion D. J., Coles W., Hotan A., Jenet F., et al. 2009, Publications of the Astronomical Society of Australia, 26, 103.

    Article  ADS  Google Scholar 

  • Hobbs, G. B. et al., 2010, Classical and Quantum Gravity, 27, 084013.

    Article  ADS  Google Scholar 

  • Jaffe A., Backer D., 2003, ApJ, 583, 616.

    Article  ADS  Google Scholar 

  • Janssen G. H., 2009, PhD thesis, University of Amsterdam.

    Google Scholar 

  • Jenet F., Hobbs G., Lee K., Manchester R., 2005, ApJ, 625, L123.

    Article  ADS  Google Scholar 

  • Jenet F., Hobbs G., van Straten W., Manchester R., Bailes M., Verbiest J., Edwards R., Hotan A., Sarkissian J., Ord S., 2006, ApJ, 653, 1571.

    Article  ADS  Google Scholar 

  • Jenet F. et al., 2009, eprint arXiv:0909.1058v1.

    Google Scholar 

  • Kaspi V. M., Taylor J. H., Ryba M. F., 1994, ApJ, 428, 713.

    Article  ADS  Google Scholar 

  • Lazaridis K., Wex N., Jessner A., Kramer M., Stappers B. W., Janssen G. H., Desvignes G., Purver M. B., Cognard I., Theureau G., Lyne A. G., Jordan C. A., Zensus J. A., 2009, MNRAS, 400, 805.

    Article  ADS  Google Scholar 

  • Lommen A. N., 2002, in WE-Heraeus Seminar on Neutron Stars, Pulsars, and Supernova Remnants, ed. W. Becker, H. Lesch, & J. Trumper (Garching: MPE ), 114.

    Google Scholar 

  • Maggiore M., 2000, Phys. Rep., 331, 283.

    Article  ADS  Google Scholar 

  • McHugh M. P., Zalamansky G., Vernotte F., Lantz E., 1996, Phys. Rev. D, 54, 5993.

    Article  ADS  Google Scholar 

  • Ölmez S., Mandic V., Siemens X., 2010, Phys. Rev. D, 81, 104028.

    Article  ADS  Google Scholar 

  • Phinney E. S., 2001, eprint arXiv:astro-ph/0108028v1.

    Google Scholar 

  • Sazhin M. V., 1978, Soviet Astronomy, 22, 36.

    ADS  Google Scholar 

  • Sesana A., Vecchio A., Colacino C. N., 2008, MNRAS, 390, 192.

    Article  ADS  Google Scholar 

  • Splaver E. M., Nice D. J., Stairs I. H., Lommen A. N., Backer D. D., 2005, ApJ, 620, 405–415.

    Article  ADS  Google Scholar 

  • Stinebring D. R., Ryba M. F., Taylor J. H., Romani R. W., 1990, Phys. Rev. D, 65, 285–288.

    Article  ADS  Google Scholar 

  • Taylor J. H., 1992, Philosophical Transactions of the Royal Society of London, 341, 117–134 (1992), 341, 117.

    Google Scholar 

  • Tofani G. et al., 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 7012 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Status of the Sardinia Radio Telescope project.

    Google Scholar 

  • van Haasteren R., Levin Y., McDonald P., Lu T., 2009, MNRAS, 395, 1005.

    Article  ADS  Google Scholar 

  • van Haasteren R., Levin Y., Janssen G. H., Lazaridis K., Kramer M., Stappers B. W., Desvignes G., Purver M. B., Lyne A. G., 2011, MNRAS, 414, 3117.

    Article  ADS  Google Scholar 

  • Verbiest J. P. W., Bailes M., Bhat N. D. R., Burke-Spolaor S., Champion D. J., Coles W., Hobbs G. B., Hotan A., et al. 2010, Classical and Quantum Gravity, 27, 084015.

    Article  ADS  Google Scholar 

  • Vilenkin A., 1981, Physics Letters B, 107, 47.

    Article  ADS  Google Scholar 

  • Wyithe J., Loeb A., 2003, ApJ, 595, 614.

    Article  ADS  Google Scholar 

  • Yardley D. R. B., Coles W. A., Hobbs G. B., Verbiest J. P. W., Manchester R. N., van Straten W., Jenet F. A., Bailes M., Bhat N. D. R., Burke-Spolaor S., Champion D. J., Hotan A. W., Oslowski S., Reynolds J. E., Sarkissian J. M., 2011, MNRAS, pp 491-+.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger van Haasteren .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Haasteren, R. (2014). Placing Limits on the Stochastic Gravitational-Wave Background Using European Pulsar Timing Array Data. In: Gravitational Wave Detection and Data Analysis for Pulsar Timing Arrays. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39599-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39599-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39598-7

  • Online ISBN: 978-3-642-39599-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics