Skip to main content

A Kernel View on Manifold Sub-sampling Based on Karcher Variance Optimization

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

Abstract

In the Hilbert space reproducing the Gaussian kernel, projected data points are located on an hypersphere. Following some recent works on geodesic analysis on that particular manifold, we propose a method which purpose is to select a subset of input data by sampling the corresponding hypersphere. The selected data should represent correctly the input data, while also maximizing the diversity. We show how these two opposite objectives can be characterized in terms of Karcher variance optimization. The corresponding algorithms are defined and results are reported on toy datasets. This shows the interest of working on the kernelized festure space instead of the input space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shroff, N., Turaga, P., Chellappa, R.: Manifold precis: An annealing technique for diverse sampling of manifolds. In: NIPS, pp. 154–162 (2011)

    Google Scholar 

  2. Farajtabar, M., Shaban, A., Rabiee, H.R., Rohban, M.H.: Manifold coarse graining for online semi-supervised learning. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 391–406. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization. PAMI 28(9), 1393–1403 (2006)

    Article  Google Scholar 

  4. Öztireli, C., Alexa, M., Gross, M.: Spectral sampling of manifolds. ACM Transaction on Graphics (Siggraph Asia) (December 2010)

    Google Scholar 

  5. Shroff, N., Turaga, P., Chellappa, R.: Video précis: Highlighting diverse aspects of videos. IEEE Transactions on Multimedia 12(8), 853–868 (2010)

    Article  Google Scholar 

  6. Schiffer, M., Spencer, D.C.: Functionals of finite Riemann surfaces. Princeton mathematical series. Princeton University Press (1954)

    Google Scholar 

  7. Coifman, R.R., Lafon, S.: Diffusion maps. Applied & Computational Harmonic Analysis 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Courty, N., Burger, T., Laurent, J.: perTurbo: A new classification algorithm based on the spectrum perturbations of the laplace-beltrami operator. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 359–374. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Courty, N., Burger, T., Marteau, P.-F.: Geodesic analysis on the gaussian RKHS hypersphere. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 299–313. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Karcher, H.: Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics 30(5), 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kendall, W.S.: Convexity and the hemisphere. J. of the London Math. Soc. 2(3), 567 (1991)

    Article  MathSciNet  Google Scholar 

  12. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the Twenty-first ICML, p. 29. ACM (2004)

    Google Scholar 

  13. Fletcher, T., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  14. Said, S., Courty, N., LeBihan, N., Sangwine, S.J.: Exact principal geodesic analysis for data on so(3). In: Proceedings of EUSIPCO 2007, Poland (2007)

    Google Scholar 

  15. Gu, M., Eisenstat, S.: Efficient algorithms for computing a strong rank-revealing qr factorization. SIAM Journal on Scientific Computing 17(4), 848–869 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xiong, T., Ye, J., Li, Q., Janardan, R., Cherkassky, V.: Efficient kernel discriminant analysis via qr decomposition. In: NIPS (2004)

    Google Scholar 

  17. Gu, M., Miranian, L.: Strong rank revealing cholesky factorization. ETNA. Electronic Transactions on Numerical Analysis 17, 76–92 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Courty, N., Burger, T. (2013). A Kernel View on Manifold Sub-sampling Based on Karcher Variance Optimization. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics