Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 575 Accesses

Abstract

Unsaturated silicon nanostructures are naturally unstable and can easily develop into structures of a variety of possible morphologies with coordination largely deviated from four of bulk materials. As such, numerous possible pristine silicon nanostructures including nanospheres and nanowires have been proposed in the literature, including the thinnest silicon nanowire proposed by us. Tubular silicon nanostructures are difficult to form, as revealed by comparing their electronic structure characteristics with those in bulk-like configuration and also their carbon counterparts. There can be some local minima for the tubular structures and one of a gear-like configuration is achievable at an extremely low temperature. Surface saturation of silicon nanostructures is extremely important to achieve the structural stability and delocalized electronic structures at the band edges. The surface saturation can be achieved by hydrogenation using HF-etching, which is possible due to the polarization of the Si–Si backbone if F-terminated at the surface. Hydrogen-terminated silicon nanoparticles are thermally very stable if the hydrogen coverage is more than 50 %. Hydrogenated silicon nanostructures can offer much improved chemical stability over wet oxidation over the hydrogenated bulk surface, due to the size-dependent oxidation, and thus can be used to fabricate highly stable nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menon M, Richter E (1999) Phys Rev Lett 83:792

    Article  CAS  Google Scholar 

  2. Marsen B, Sattler K (1999) Phys Rev B 60:11593

    Google Scholar 

  3. Li BX, Zhang RQ, Cao PL, Lee ST (2002) Phys Rev B 65:125305

    Article  Google Scholar 

  4. Kang JW, Hwang HJ (2003) Nanotechnology 14:402

    Article  CAS  Google Scholar 

  5. Kang JW, Byun KR, Hwang HJ (2004) Modelling Simul Mater Sci Eng 12:1

    Article  CAS  Google Scholar 

  6. Bai J, Zeng XC, Tanaka H, Zeng JY (2004) PNAS 101:2664

    Article  CAS  Google Scholar 

  7. Fagan SB, Barierle RJ, Mota R, da Silva AJR, Fazzio A (2000) Phys Rev B 61:9994

    Article  CAS  Google Scholar 

  8. Seifert G, Kohler Th, Urbassek HM, Hernandez E, Frauenheim Th (2001) Phys Rev B 63:193409

    Article  Google Scholar 

  9. Zhang RQ, Lee ST, Law CK, Li WK, Teo BK (2002) Chem Phys Lett 364:251

    Article  CAS  Google Scholar 

  10. Barnard AS, Russo SP (2003) J Phys Chem B 107:7577

    Article  CAS  Google Scholar 

  11. Zhang M, Kan YH, Zang QJ, Su ZM, Wang RS (2003) Chem Phys Lett 379:81

    Article  CAS  Google Scholar 

  12. Zhang RQ, Lee HL, Li WK, Teo BK (2005) J Phys Chem B 109:8605

    Article  CAS  Google Scholar 

  13. Zhao MW, Zhang RQ, Xia Y, Song C, Lee ST (2007) J Phys Chem C 111:1234

    Article  CAS  Google Scholar 

  14. Sha J, Niu JJ, Ma XY (2002) Adv Mater 14:1219

    Article  CAS  Google Scholar 

  15. Teo BK, Li CP, Sun XH, Wong NB, Lee ST (2003) Inorg Chem 42:6723

    Article  CAS  Google Scholar 

  16. Tang YH, Pei LZ, Chen YW, Guo C (2005) Phys Rev Lett 95:116102

    Article  CAS  Google Scholar 

  17. Chen YW, Tang YH, Pei LZ, Guo C (2005) Adv Mater 17:564

    Article  Google Scholar 

  18. Crescenzi MD, Castrucci P, Scarsilli M, Diociaiuti M, Chaudhari PS, Balasubramanian C, Bhave TM, Bhoraskar SV (2005) Appl Phys Lett 86:231901

    Article  Google Scholar 

  19. Janzon KH, Schafer H, Weiss A, Anorg Z (1970) Allg Chem 372:87

    Article  CAS  Google Scholar 

  20. Canham LT (1990) Appl Phys Lett 57:1046

    Article  CAS  Google Scholar 

  21. Wang X, Huang D, Ye L, Yang M, Hao P, Fu H, Hou X, Xie X (1993) Phys Rev Lett 71:1265

    Article  CAS  Google Scholar 

  22. Schuppler S, Friedman SL, Marcus MA, Adler DL, Xie Y-H, Ross FM, Harris TD, Brown WL, Chabal YJ, Brus LE, Citrin PH (1994) Phys Rev Lett 72:2648

    Article  CAS  Google Scholar 

  23. Delley B, Steigmeier EF (1993) Phys Rev B 47:1397

    Article  CAS  Google Scholar 

  24. Read AJ, Needs RJ, Nash KJ, Canham LT, Calcott PDJ, Qteish A (1992) Phys Rev Lett 69:1232

    Article  CAS  Google Scholar 

  25. Li K-H, Tsai C, Shih S, Hsu T, Kwong DL, Campbell JC (1992) J Appl Phys 72:3816

    Article  CAS  Google Scholar 

  26. Robinson MB, Dillon AC, George SM (1993) Appl Phys Lett 62:1493

    Article  CAS  Google Scholar 

  27. Lee S-G, Cheong B-H, Lee K-H, Chang KJ (1995) Phys Rev B 51:1762

    Article  CAS  Google Scholar 

  28. Brandt MS, Fuchs HD, Stutzmann M, Weber J, Cardona M (1992) Solid State Commun 81:307

    Article  CAS  Google Scholar 

  29. Lavine JM, Sawan SP, Shieh YT, Bellezza AJ (1993) Appl Phys Lett 62:1099

    Article  CAS  Google Scholar 

  30. Xiao Y, Heben MJ, McCullough JM, Tsuo YS, Pankove JI, Deb SK (1993) Appl Phys Lett 62:1152

    Article  CAS  Google Scholar 

  31. Xu ZY, Gal M, Gross M (1992) Appl Phys Lett 60:1375

    Article  CAS  Google Scholar 

  32. Tsai C, Li K-H, Sarathy J, Shih S, Campbell JC, Hance BK, White JM (1992) Appl Phys Lett 59:2814

    Article  Google Scholar 

  33. Tsai C, Li K-H, Kinosky DS, Qian R-Z, Hsu TC, Irby JT, Banerjee SK, Tasch AF, Campbell JC, Hance BK, White JM (1992) Appl Phys Lett 60:1700

    Article  CAS  Google Scholar 

  34. Vasquez RP, Fathauer RW, George T, Ksendzov A, Lin TL (1992) Appl Phys Lett 60:1004

    Article  CAS  Google Scholar 

  35. Prokes SM, Carlos WE, Glembocki OJ (1994) Phys Rev B 50: 17093

    Google Scholar 

  36. Schuppler S, Friedman SL, Marcus MA, Adler DL, Xie Y-H, Ross FM, Chabal YJ, Harris TD, Brus LE, Brown WL, Chaban EE, Szajowski PF, Christman SB, Citrin PH (1995) Phys Rev B 52:4910

    Article  CAS  Google Scholar 

  37. Brus LE, Szajowski PF, Wilson WL, Harris TD, Schuppler S, Citrin PH (1995) J Am Chem Soc 117:2915

    Article  CAS  Google Scholar 

  38. Furukawa S, Miyasato T (1989) Superlattices Microstruct 5:317

    Google Scholar 

  39. Morisaki H, Ping FW, Ono H, Yazawa K (1991) J Appl Phys 70:1869

    Article  CAS  Google Scholar 

  40. Chen KJ, Huang XF, Xu J, Feng D (1992) Appl Phys Lett 61:2069

    Article  CAS  Google Scholar 

  41. Costa J, Roura P, Sardin G, Morante JR, Bertran E (1994) Appl Phys Lett 64:463

    Article  CAS  Google Scholar 

  42. Roura P, Costa J, Sardin G, Morante JR, Bertran E (1994) Phys Rev B 50:18124

    Google Scholar 

  43. Raghavachari K (1986) J Chem Phys 84:5672

    Article  CAS  Google Scholar 

  44. Zhang RQ, Wang JJ, Dai GC, Wu JA, Zhang JP, Xing YR (1989) Chin J Semicond 10:327

    Google Scholar 

  45. Zhang RQ (1989) Solid State Commun 69:681

    Article  CAS  Google Scholar 

  46. Zhang RQ, Costa J, Bertran E (1996) Role of structural saturation and geometry in the luminescence of silicon-based nanostructured materials. Phys Rev B 53:7847

    Article  CAS  Google Scholar 

  47. Lin C-H, Lee S-C, Chen Y-F (1993) Appl Phys Lett 63:902

    Article  CAS  Google Scholar 

  48. Chabal YJ (1984) Phys Rev B 29:3677

    Article  CAS  Google Scholar 

  49. Chabal YJ, Higashi GS, Raghavachari K, Burrows VA (1989) J Vac Sci Technol A 7:2104

    Article  CAS  Google Scholar 

  50. Sumitomo K, Kobayashi T, Shoji F, Oura K, Katayama I (1991) Phys Rev Lett 66:1193

    Article  CAS  Google Scholar 

  51. Higashi GS, Becker RS, Chabal YJ, Becker AJ (1991) Appl Phys Lett 58:1656

    Article  CAS  Google Scholar 

  52. Higashi GS, Chabal YJ, Trucks GW, Raghavachari K (1990) Appl Phys Lett 56:656

    Article  CAS  Google Scholar 

  53. Hirashita N, Kinoshita M, Aikawa I, Ajioka T (1990) Appl Phys Lett 56:451

    Article  CAS  Google Scholar 

  54. Ikeda H, Hotta K, Furuta S, Zaima S, Yasuda Y (1069) Jpn J Appl Phys 1996:35

    Google Scholar 

  55. Kern W, Puotinen DA (1970) RCA Rev 31:187

    CAS  Google Scholar 

  56. Zhang RQ, Lifshizh Y, Lee ST (2003) Adv Mater (Weinheim, Ger) 15:635

    Google Scholar 

  57. Lide DR (2003) Handbook of chemistry and physics, 83rd edn. CRC, Boca Raton, pp 9–55 (CRC, Boca Raton, FL, 2002–2003)

    Google Scholar 

  58. Trucks GW, Krishnan R, Higashi GS, Chabal YJ (1990) Phys Rev Lett 65:504

    Google Scholar 

  59. Sacher E, Yelon A (1991) Phys Rev Lett 66:1647

    Article  CAS  Google Scholar 

  60. Trucks GW, Krishnan R, Higashi GS, Chabal YJ (1991) Phys Rev Lett 66:1648

    Article  CAS  Google Scholar 

  61. Ren SY, Dow JD (1992) Phys Rev B 45:6492

    Article  CAS  Google Scholar 

  62. Hirao M, Uda T (1994) Surf Sci 306:87

    Article  CAS  Google Scholar 

  63. Delley B, Steigmeier EF (1995) Appl Phys Lett 67:2370

    Article  CAS  Google Scholar 

  64. Delerue C, Allan G, Lannoo M (1993) Phys Rev B 48:11024

    Article  CAS  Google Scholar 

  65. Wang LW, Zunger A (1994) J Phys Chem 98:2158

    Article  CAS  Google Scholar 

  66. Zhang RQ, Costa J, Bertran E (1996) Phys Rev B 53:7847

    Article  CAS  Google Scholar 

  67. Onida G, Andreoni W (1995) Chem Phys Lett 243:183

    Article  CAS  Google Scholar 

  68. Miyazaki T, Uda T, Štich I, Terakura K (1996) Chem Phys Lett 261:346

    Article  CAS  Google Scholar 

  69. Meleshko V, Morokov Yu, Schweigert V (1999) Chem Phys Lett 300:118

    Article  CAS  Google Scholar 

  70. Klein P, Urbassek HM, Frauenheim Th (1999) Phys Rev B 60:5478

    Article  CAS  Google Scholar 

  71. Kratzer P (1997) J Chem Phys 106:6752

    Article  CAS  Google Scholar 

  72. Kratzer P, Hammer B, Nørskov JK (1995) Phys Rev B 51:13432

    Article  CAS  Google Scholar 

  73. Kratzer P, Pehlke E, Scheffler M, Raschke MB, Höfer U (1998) Phys Rev Lett 81:5596

    Article  CAS  Google Scholar 

  74. Lee SM, Lee YH, Kim NG (2000) Surf Sci 470:89

    Article  CAS  Google Scholar 

  75. Yu DK, Zhang RQ, Lee ST (2002) Structural properties of hydrogenated silicon nanocrystals and nano-clusters. J Appl Phys 92:7453

    Article  CAS  Google Scholar 

  76. Cullis AG, Canham LT (1991) Nature (London) 353:335

    Article  CAS  Google Scholar 

  77. Sham TK, Jiang DT, Couithard I, Lorimer JW, Feng XH, Tan KH, Frigo SP, Rosenberg RA, Houghton DC, Bryskiewicz B (1993) Nature (London) 363:331

    Article  CAS  Google Scholar 

  78. Buda F, Kohanoff J, Parrinello M (1992) Phys Rev Lett 69:1272

    Article  CAS  Google Scholar 

  79. Tischler MA, Collins RT, Stathis JH, Tsang JC (1992) Appl Phys Lett 60:639

    Article  CAS  Google Scholar 

  80. Morales AM, Lieber CM (1998) Science 279:208

    Article  CAS  Google Scholar 

  81. Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15:639

    Google Scholar 

  82. Cooke DW, Bennett BL, Farnum EH, Hults WL, Sickafus KE, Smith JF, Smith JL, Taylor TN, Tiwari P (1996) Appl Phys Lett 68:1663

    Article  CAS  Google Scholar 

  83. Yu DP, Bai ZG, Wang JJ, Zou YH, Qian W, Fu JS, Zhang HZ, Ding Y, Xiong GC, You LP, Xu J, Feng SQ (1999) Phys Rev B 59:R2498

    Article  CAS  Google Scholar 

  84. Daami A, Bremond G, Stalmans L, Poortmans J (1998) J Lumin 80:169

    Article  CAS  Google Scholar 

  85. Zhou XT, Zhang RQ, Peng HY, Shang NG, Wang N, Bello I, Lee CS, Lee ST (2000) Chem Phys Lett 332:215

    Article  CAS  Google Scholar 

  86. Becker RS, Higashi GS, Chabal YJ, Becker AJ (1917) Phys Rev Lett 1990:65

    Google Scholar 

  87. Nachtigall P, Jordan KD, Janda KC (1991) J Chem Phys 95:8652

    Article  CAS  Google Scholar 

  88. Weldon MK, Queeney KT, Gurevich AB, Stefanov BB, Chabal YJ, Raghavachari K (2000) J Chem Phys 113:2440

    Article  CAS  Google Scholar 

  89. Teraishi K, Takaba H, Yamada A, Endou A, Gunji I, Chatterjee A, Kubo M, Miyamoto A, Nakamura K, Kitajima M (1998) J Chem Phys 109:1495

    Article  CAS  Google Scholar 

  90. Ranke W, Xing YR (1997) Surf Sci 381:1

    Article  CAS  Google Scholar 

  91. Zhang RQ, Lu WC, Zhao YL, Lee ST (2004) J Phys Chem B 108:1967–1973

    Article  CAS  Google Scholar 

  92. Zhang RQ, Lu WC, Lee ST (2002) Appl Phys Lett 80:4223

    Article  CAS  Google Scholar 

  93. Hoffmann R (1988) Rev Mod Phys 60:601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Zhang, RQ. (2014). Stability of Silicon Nanostructures. In: Growth Mechanisms and Novel Properties of Silicon Nanostructures from Quantum-Mechanical Calculations. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40905-9_3

Download citation

Publish with us

Policies and ethics