Skip to main content

Quantifying Biased β-Arrestin Signaling

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

It is now established that agonists do not uniformly activate pleiotropic signaling mechanisms initiated by receptors but rather can bias signals according to the unique receptor conformations they stabilize. One of the important emerging signaling systems where this can occur is through β-arrestin. This chapter discusses biased signaling where emphasis or de-emphasis of β-arrestin signaling is postulated (or been shown) to be beneficial. The chapter specifically focuses on methods to quantify biased effects; these methods furnish scales that can be used in the process of optimizing biased agonism (and antagonism) for therapeutic benefit. Specifically, methods to derive ΔΔLog(τ/K A) or ΔΔLog(Relative Activity) values are described to do this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aquila B, Coulbault L, Davis A et al (2012) βarrestin 1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands. Cell Signal 24:699–707

    Google Scholar 

  • Ahn S, Kim J, Hara MR et al (2009) β-arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem 284:8855–8865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen JA, Yost JM, Setola V et al (2011) Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci USA 108:18488–18493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aplin M, Christensen GL, Schneider M et al (2007a) The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts. Basic Clin Pharmacol Toxicol 100:289–295

    CAS  PubMed  Google Scholar 

  • Aplin M, Christensen GL, Schneider M et al (2007b) Differential extracellular signal-regulated kinases kinases q1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. Basic Clin Pharmacol Toxicol 100:296–301

    CAS  PubMed  Google Scholar 

  • Aplin M, Bonde MM, Hansen JL (2009) Molecular determinants of angiotensin II type 1 receptor functional selectivity. J Mol Cell Cardiol 46:15–24

    CAS  PubMed  Google Scholar 

  • Bassoni DL, Raab WJ, Achacoso PL et al (2012) Measurements of β-arrestin recruitment to activated seven transmembrane receptors using enzyme complementation. Methods Mol Biol 897:181–203

    CAS  PubMed  Google Scholar 

  • Berchiche YA, Gravel S, Pelletier ME et al (2011) Different effects of the different natural CC chemokine receptor 2b ligands on beta-arrestin recruitment, Gαi signaling, and receptor internalization. Mol Pharmacol 79:488–498

    CAS  PubMed  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonist. Proc R Soc Lond B Biol Sci 220:141–162

    CAS  PubMed  Google Scholar 

  • Black JW, Leff P, Shankley NP, Wood J (1985) An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol 84:561–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boerrigter G, Lark MW, Whalen EJ et al (2011) Cardiorenal actions of TRV120027, a novel β-arrestin-biased ligand at the angiotensin II type 1 receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ Heart Fail 4:770–778

    CAS  PubMed  Google Scholar 

  • Boerrigter G, Soergel DG, Violin JD et al (2012) TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ Heart Fail 5:627–634

    CAS  PubMed  Google Scholar 

  • Bohinc BN, Gesty-Palmer D (2011) β-arrestin-biased agonism at the parathyroid hormone receptor uncouples bone formation from bone resorption. Endocr Metab Immune Disord Drug Targets 11:112–119

    CAS  PubMed  Google Scholar 

  • Bohn LM, Schmid CL (2010) Serotonin receptor signaling and regulation via β-arrestins. Crit Rev Biochem Mol Biol 45:555–566

    CAS  PubMed  Google Scholar 

  • Bohn L, Lefkowitz RJ, Gainetdinov RR et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498

    CAS  PubMed  Google Scholar 

  • Butcher AJ, Prihandoko R, Kong KC et al (2011) Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling barcode. J Biol Chem 286:11506–11518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casella I, Ambrosio C, Gro MC et al (2011) Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling. Biochem J 438:191–202

    CAS  PubMed  Google Scholar 

  • Chen X, Sassano MF, Zheng L et al (2012) Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor. J Med Chem 55:7141–7153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: Novel targets for drug discovery. Nat Rev Drug Discov 1:198–210

    CAS  PubMed  Google Scholar 

  • Christopoulos A, Kenakin TP (2002) G-protein coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    CAS  PubMed  Google Scholar 

  • Coffa S, Breitman M, Hanson SM et al (2011) The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One 6:e28723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colquhoun D (1985) Imprecision in presentation of binding studies. Trends Pharmacol Sci 6:197

    Google Scholar 

  • Dalle S, Ravier MA, Bertrand G (2011) Emerging roles for β-arrestin-1 in the control of pancreatic β-cell function and mass: new therapeutic strategies and consequences for drug screening. Cell Signal 23:522–528

    CAS  PubMed  Google Scholar 

  • Dang VC, Chieng BC, Christie MJ (2012) Prolonged stimulation of μ-opioid receptors produces β-arrestin-2 mediated heterologous desensitization of α2-adrenoceptor function in locus ceruleus neurons. Mol Pharmacol 82:473–480

    CAS  PubMed  Google Scholar 

  • DeFea KA (2011) Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 23:621–629

    CAS  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ et al (2007) Beta arrestins and cell signaling. Annu Rev Physiol 69:483–510

    CAS  PubMed  Google Scholar 

  • DeWire SM, Kim J, Whalen EJ et al (2008) Beta-arrestin mediated signaling regulates protein synthesis. J Biol Chem 283:10611–10620

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeWire SM, Yamashita DS, Rominger DH et al (2013) A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    CAS  PubMed  Google Scholar 

  • Doll C, Konietzko F, Pöll F et al (2011) Agonist-selectuive patterns of m-opioid receptor phosphorylation revealed by phosphosite-specific antibodies. Br J Pharmacol 164:298–307. doi:10.1111/j.1476-5381.2011.01382.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehlert FJ (2005) Analysis of allosterism in functional assays. J Pharmacol Exp Ther 315:740–754

    CAS  PubMed  Google Scholar 

  • Feng X, Wang W, Liu J et al (2011) β-Arrestins: multifunctional signaling adaptors in type 2 diabetes. Mol Biol Rep 38:2517–2528

    CAS  PubMed  Google Scholar 

  • Fereshteh M, Kovacs JJ, Zhao C et al (2012) β-arrestin2 mediates the initiation and progression of myeloid leukemia. Proc Natl Acad Sci USA 109:12532–12537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari SL, Pierroz DD, Glatt V et al (2005) Bone response to intermittent parathyroid hormone is altered in mice bull for (beta) arrestin 2. Endocrinology 146:1854–1862

    CAS  PubMed  Google Scholar 

  • Figueroa KW, Griffin MT, Ehlert FJ (2009) Selectivity of agonists for the active state of M1 to M4 muscarinic receptor subtypes. J Pharmacol Exp Ther 328:331–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin JM, Vasiljevik T, Prisinzano TE et al (2012) Cannabinoid agonists increase the interaction between β-arrestin and ERK1/2 and upregulate β-arrestin 2 and 5-HT(2A) receptors. Pharmacol Res 68:46–58

    PubMed  Google Scholar 

  • Fraunfelder H, Parak F, Young RD (1988) Conformational substrates in proteins. Annu Rev Biophys Biophys Chem 17:451–479

    Google Scholar 

  • Fraunfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Google Scholar 

  • Gesty-Palmer D, Chen M, Reiter E et al (2006) Distinct β-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281:10856–10864

    CAS  PubMed  Google Scholar 

  • Gesty-Palmer D, Flannery P, Yuan L et al (2009) A β-arrestin–biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 1:1ra1

    PubMed Central  PubMed  Google Scholar 

  • Godin CM, Ferguson SS (2012) Biased agonism of the angiotensin II type 1 receptor. Mini Rev Med Chem 12:812–816

    CAS  PubMed  Google Scholar 

  • Grady MA, Gasperoni TL, Kirkpatrick P (2003) Aripiprazole. Nat Rev Drug Discov 2:427–428

    CAS  PubMed  Google Scholar 

  • Griffin T, Figueroa KW, Liller S et al (2007) Estimation of agonist affinity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/0, Gs and G15. J Pharmacol Exp Ther 321:1193–1207

    CAS  PubMed  Google Scholar 

  • Groer CE, Tidgewell K, Moyer RA et al (2007) An opioid agonist that does not induce mu opioid receptor-arrestin interactions or receptor internalization. Mol Pharmacol 71:549–557

    CAS  PubMed  Google Scholar 

  • Heinrich EL, Lee W, Lu J et al (2012) Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediating signaling pathways in pancreatic cancer cells. J Transl Med 10:68–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilser J, Freire E (1997) Predicting the equilibrium protein folding pathway: structure-based analysis of staphylococcal nuclease. Protein Struct Funct Genet 27:171–183

    CAS  Google Scholar 

  • Hilser J, Dowdy D, Oas TG et al (1998) The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc Natl Acad Sci USA 95:9903–9908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holloway AC, Qian H, Pipolo L et al (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61:768–777

    CAS  PubMed  Google Scholar 

  • Hostrup A, Christensen GL, Bentzen BH et al (2012) Fucntionally selective AT(1) receptor activation reduces ischemia reperfusion injury. Cell Physiol Biochem 30:642–652

    CAS  PubMed  Google Scholar 

  • Hunton D, Barnes WG, Kim J et al (2005) Beta-arrestin 2 dependent angiotensin II type 1A receptor-mdiated pathway of chemotaxis. Mol Pharmacol 67:1229–1236

    CAS  PubMed  Google Scholar 

  • Ibrahim IA, Kurose H (2012) β-arrestin-mediated signaling improves the efficacy of therapeutics. J Pharmacol Sci 118:408–412

    CAS  PubMed  Google Scholar 

  • Ji S-P, Zhang Y, van Cleemput J et al (2006) Disruption of PTEN coupling with 5-HT2C receptors supporesses behavioral responses induced by drugs of abuse. Nat Med 12:324–329

    CAS  PubMed  Google Scholar 

  • Jorgensen R, Roed N, Heding A et al (2011) Beta-arrestin2 as a competitor for GRK2 interaction with the GLP-1 receptor upon receptor activation. Pharmacology 88:174–181

    CAS  PubMed  Google Scholar 

  • Just S, Illing S, Trfester-Zedlitz M et al (2013) Differentiation of opioid drug effects by hierarchical multi-site phosphorylation. Mol Pharmacol 83:633–639

    CAS  PubMed  Google Scholar 

  • Kammermann M, Denelavas A, Imbach A et al (2011) Impedance measurement: a new method to detect ligand-biased receptor signaling. Biochem Biophys Rec Commun 412:419–424

    CAS  Google Scholar 

  • Kao YJ, Ghosh M, Schonbrunn A (2011) Ligand-dependent mechanisms of sst2A receptor trafficking: role of site-specific phosphorylation and receptor activation in the actions of biased somatostatin agonists. Mol Endocrinol 25:1040–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly E (2011) The subtleties of μ-opioid receptor phosphorylation. Br J Pharmacol 164:294–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenakin TP (1984) The relative contribution of affinity and efficacy to agonist activity: organ selectivity of noradrenaline and oxymetazoline. Br J Pharmacol 81:131–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenakin TP (1995) Agonist-receptor efficacy II: agonist-trafficking of receptor signals. Trends Pharmacol Sci 16:232–238

    CAS  PubMed  Google Scholar 

  • Kenakin TP (2002) Efficacy at G Protein Coupled Receptors. Annu Rev Pharmacol Toxicol 42:349–379

    CAS  PubMed  Google Scholar 

  • Kenakin TP (2013) New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review. Br J Pharmacol 168:554–575

    CAS  PubMed  Google Scholar 

  • Kenakin TP, Christopoulos A (2013) Signaling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216

    CAS  PubMed  Google Scholar 

  • Kenakin TP, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenakin TP, Morgan PH (1989) Theoretical effects of single and multiple transducer receptor coupling proteins on estimates of the relative potency of aognists. Mol. Pharmacol. 35: 214–222

    Google Scholar 

  • Kenakin TP, Onaran O (2002) The ligand paradox between affinity and efficacy: Can you be there and not make a difference? Trends Pharmacol Sci 23:275–280

    CAS  PubMed  Google Scholar 

  • Kenakin TP, Ambrose JR, Irving PE (1991) The relative efficiency of β-adrenoceptor coupling to myocardial inotropy and diastolic relaxation: organ selective treatment for diastolic dysfunction. J Pharmacol Exp Ther 257:1189–1197

    CAS  PubMed  Google Scholar 

  • Kenakin TP, Watson C, Muniz-Medina V, Christopoulos A et al (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kew JNC, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurons. J Physiol 497(3):761–772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilpatrick LE, Holliday ND (2012) Dissecting the pharmacology of G protein-coupled receptor signalling complexes using bimolecular fluorescence complementation. Methods Mol Biol 897:109–138

    CAS  PubMed  Google Scholar 

  • Kim IM, Tilley DG, Chen J et al (2008) β-blockers alprenolol and carvedilol stimulate β-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci USA 105:14555–14560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KS, Abraham D, Williams B et al (2012) β-arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol Heart Circ Physiol 303:H1001–H1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohout TA, Nicholas SL, Perry SJ et al (2004) Differential desensitization, receptor phosphorylation, β-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222

    CAS  PubMed  Google Scholar 

  • Langemeijer EV, Verzijl D, Dekker SJ et al (2013) Functional selectivity of adenosine A(1) receptor ligands? Purinergic Signal 9:91–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leach K, Sexton PM, Christopoulos A (2007) Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol Sci 28:382–389

    CAS  PubMed  Google Scholar 

  • Liggett SB (2011) Phosphorylation barcoding as a mechanism of directing GCPR signaling. Sci Signal 4:pe36

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SSG, Daaka Y et al (1999) β-Arrestin-Dependent Formation of β2 Adrenergic Receptor-Src Protein Kinase Complexes. Science 283:655–661

    CAS  PubMed  Google Scholar 

  • Lymperopoulos A (2012) Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors. Curr Pharm Des 18:192–198

    CAS  PubMed  Google Scholar 

  • MacKinnon AC, Tufail-Hanif U, Lucas CD et al (2005) Expression of V1A and GRP receptoprs leads to cellular transformation and increased sensitivity to substance-P analogue-induced growth inhibition. Br J Cancer 92:522–531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mailman RB (2007) GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 28:390–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mary S, Damian M, Louet M et al (2012) Ligands and signaling proteins govern the conformational landscape explored by G protein-coupled receptor. Proc Natl Acad Sci USA 109:8304–8309

    CAS  PubMed Central  PubMed  Google Scholar 

  • McPherson J, Rivero G, Baptist M et al (2010) μ-opioid receptors: correlation of agonist efficacy for signalling with ability to achieve internalization. Mol Pharmacol 78:756–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosnier LO, Sinha RK, Burnier L et al (2012) Biased agonism of protease-activated receptor 1 by activated protein C caused by non-canonical cleavage of Arg46. Blood 120:5237–5246

    CAS  PubMed  Google Scholar 

  • Nakaya M, Chikura S, Watari K et al (2012) Induction of cardiac fibrosis by β-blocker in G protein-independent and G protein-coupled receptor kinase 5/β-arrestin2-dependent signaling pathways. J Biol Chem 287:35669–35677

    PubMed Central  PubMed  Google Scholar 

  • Nguyen PT, Schmid CL, Raehal KM et al (2012) β-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol Psychiatry 71:714–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nickolls SA, Waterfield A, Williams RE et al (2011) Understanding the effect of different assay formats on agonist parameters: a study using the μ-opioid receptor. J Biomol Screen 16:706–716

    CAS  PubMed  Google Scholar 

  • Nijmeijer S, Vischer HF, Rosethorne EM et al (2012) Analysis of multiple histamine H4 receptor compound classes uncovers Gαi protein and β-arrestin2-biased ligands. Mol Pharmacol 82:1174–1182

    CAS  PubMed  Google Scholar 

  • Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S et al (2011) Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential fucntions of β-arrestin. Sci Signal 4: 1–10

    Google Scholar 

  • Noma T, Lemaire A, Prasad SV et al (2007) β-arrestin-mediated β1-adrenergic receptor transactivation of the EGRF confers cardioprotection. J Clin Invest 117:2445–2458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noor N, Patel CB, Rockman HA (2011) B arrestin: a signaling molecule and potential therapeutic target for heart failure. J Mol Cell Cardiol 51:534–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onaran HO, Costa T (1997) Agonist efficacy and allosteric models of receptor action. Ann N Y Acad Sci 812:98–115

    CAS  PubMed  Google Scholar 

  • Onaran HO, Scheer A, Cotecchia S et al (2002) A look at receptor efficacy. From the signaling network of the cell to the intramolecular motion of the receptor. In: Kenakin TP, Angus JA (eds) The pharmacology of functional, biochemical, and recombinant systems handbook of experimental pharmacology, vol 148. Springer, Heidelberg, pp 217–80

    Google Scholar 

  • Pal K, Mathur M, Kumar P et al (2013) Divergent β-arrestin-dependent signaling events are dependent upon seuences with G-protein coupled receptor C-termini. J Biol Chem 288:3265–3274

    CAS  PubMed  Google Scholar 

  • Patel CB, Noor N, Rockman HA (2010) Functional selectivity in adrenergic and angiotensin signaling systems. Mol Pharmacol 78:983–992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez DM, Karnick SS (2005) Multiple signaling states of G-protein coupled receptors. Pharmacol Rev 57:147–161

    CAS  PubMed  Google Scholar 

  • Raehal KM, Walker JKL, Bohn LM (2005) Morphine side effects in β-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201

    CAS  PubMed  Google Scholar 

  • Rajagopal S, Whalen EJ, Violin JD et al (2006) β-arrestin-2 mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci USA 103:16284–16289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopal S, Ahn S, Rominger DH et al (2011) Quantifying ligand bias at seven-transmembrane receptors. Mol Pharmacol 80:367–377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopla S, Lefkowitz RJ, Rockman HA (2005) When 7 transmembrane recepors are not G protein-coupled receptors. J Clin Invest 115:2971–2974

    Google Scholar 

  • Rasmussen SGF, DeVree BT, Zou Y et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosano L, Cianfrocca R, Tocci P et al (2013) β-arrestin is a nuclear transcriptional regulator of endothelin-1 induced β-catenin signaling. Oncogene 32:5066–5077

    Google Scholar 

  • Rosethorne EM, Charlton SJ (2011) Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol Pharmacol 79:749–757

    CAS  PubMed  Google Scholar 

  • Roth BL, Chuang DM (1987) Multiple mechanisms of serotonergic signal transduction. Life Sci 41:1051–1064

    CAS  PubMed  Google Scholar 

  • Ryman-Rasmussen JP, Griffith A, Oloff S et al (2007) Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology 52:562–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salahpour A, Espinoza S, Masri B et al (2012) BRET biosensors to study GPCR biology, pharmacology, and signal transduction. Front Endocrinol 3:105

    Google Scholar 

  • Sanchez-Martin L, Sanchez-Mateos P, Cabanas C (2013) CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 19:12–22

    CAS  PubMed  Google Scholar 

  • Sauliere A, Bellot M, Paris H et al (2012) Deciphering biased-agonism complexity reveals new active AT1 receptor entity. Nat Chem Biol 8:622–630

    CAS  PubMed  Google Scholar 

  • Schaff M, Receveur N, Bourdon C et al (2012) β-arrestin-1 participates in thrombosis and regulates integrin aIIbβ3 signaling with affecting P2Y receptors desensitization and function. Thromb Haemost 107:735–748

    CAS  PubMed  Google Scholar 

  • Schelshorn D, Joly F, Mutel S et al (2012) Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation. Mol Pharmacol 81:309–318

    CAS  PubMed  Google Scholar 

  • Schmid CL, Bohn LM (2009) Physiological and pharmacological implications of beta-arrestin regulation. Pharmacol Ther 121:285–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shenoy SK (2011) β-arrestin-biased signaling by the β-adrenergic receptors. Curr Top Membr 67:51–78

    CAS  PubMed  Google Scholar 

  • Soh UJK, Trejo J (2011) Activated protein C promotes protease-activated receptor-1 cytoprotectve signaling through β-arrestin and dishevelled scaffolds. Proc Natl Acad Sci USA 108:E1372–E1380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonoda N, Imamura T, Yoshizaki T et al (2008) β-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proc Natl Acad Sci USA 105:6614–6619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strachan RT, Sciaky N, Cronan MR et al (2010) Genetic deletion of p90 ribosomal kinase 2 alters patterns of 5-hydroxytryptamine2A serotonin receptor functional selectivity. Mol Pharmacol 77:327–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thathiah A, Horre K, Snellinix A et al (2013) β-arrestin 2 regulates Aβ generation and Y-secretase activity in Alzheimer’s disease. Nat Med 19(1):43–9

    CAS  PubMed  Google Scholar 

  • Tilley DG (2011a) G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res 109:217–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tilley DG (2011b) Functional relevance of biased signaling at the angiotensin II type 1 recetor. Endocr Metab Immune Disord Drug Targets 11:99–111

    CAS  PubMed  Google Scholar 

  • Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153:S167–S176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type specific signaling. Trends Pharmacol Sci 29:413–420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tran JA, Chang A, Matsui M, Ehlert FJ (2009) Estimation of relative microscopic affinity constants of agonists for the active state of the receptor in functional studies on m2 and m3 muscarinic receptors. Mol Pharmacol 75:381–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trankle C, Weyand A, Schroter A, Mohr K (1999) Using a radioalloster to test predictions of the cooperativity model for gallamine binding to the allosteric site of muscarinic acetylcholine (m2) receptors. Mol Pharmacol 56:962–965

    CAS  PubMed  Google Scholar 

  • Urban JD, Vargas GA, von Zastrow M, Mailman RB (2007) Aripirazole has functionally selective action at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 32:67–77

    CAS  PubMed  Google Scholar 

  • Vassart G, Dumont JE (1992) The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 13:596–611

    CAS  PubMed  Google Scholar 

  • Viladarga JP, Gardella TJ, Wehbi VL, Feinstein TN (2012) Non canonical signaling of the PTH receptor. Trends Pharmacol Sci 33:423–431

    Google Scholar 

  • Violin JD, Lekowitz RJ (2007) β-arrestin-biased ligands at seven transmembrane receptors. Trends Pharmacol Sci 28:416–422

    CAS  PubMed  Google Scholar 

  • Violin JD, DeWire SM, Yamashita D, Rominger DH et al (2010) Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

    CAS  PubMed  Google Scholar 

  • Walters RW, Shukla A, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muelbauer MJ, Whalen EJ, Lefkowitz RJ (2009) β-arrestin 1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest 119:1312–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walwyn W, Evans CJ, Hales TG (2007) Beta arrestin2 and c-Src regulate the constitutive activity and recycling of my opioid receptors in dorsal root ganglion neurons. J Neurosci 27:5092–5104

    CAS  PubMed  Google Scholar 

  • Watson C, Chen G, Irving PE, Way J, Chen W-J, Kenakin TP (2000) The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol Pharmacol 58:1230–1238

    CAS  PubMed  Google Scholar 

  • Watson SJ, Brown AJ, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81:631–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ (2003) Independent beta-arrestin 2 and G protein mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100:10782–10787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willins DL, Berry SE, Alsayegh L, Backstrom JR, Sanders-Bush E, Friedman L, Roth BL (1999) Clozapine and other 5-HT2A antagonists alter the subcellular distribution of 5-hydroxytryptamine 2A receptors in vitro and in vivo. Neuroscience 91:599–606

    CAS  PubMed  Google Scholar 

  • Xu H et al (2007) A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) μ-opioid agonists on cellular markers related to opioid tolerance and dependence. SYNAPSE 61:166–175

    CAS  PubMed  Google Scholar 

  • Yan F, Mosier PD, Westkaemper RB, Roth BL (2008) Gα-subunits differentially alter the conformation and agonist affinity of k-opioid receptors. Biochemistry 47:1567–1578

    CAS  PubMed  Google Scholar 

  • Zhai P, Yamamoto M, Galeotti J, Liu J, Masurekar M, Thaisz J, Irie K, Holle H, Yu X, Kupershmid S et al (2005) Cardiac-specific overexpression of At1 receptor mutant lacking Gaq/Gai coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 115:3045–3056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan X, Kaoud TS, Dalby KN, Gurevich VV (2011) Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Biochemistry 50:10520–10529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, He X, Tan J et al (2011) β-arrestin2 mediates b-2 adrenergic receptor signaling inducing prostate cancer cell progression. Oncol Rep 26:1471–1477

    CAS  PubMed  Google Scholar 

  • Zhang TL, Fu JL, Geng Z et al (2012) The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci Ther 18:981–987

    CAS  PubMed  Google Scholar 

  • Zheng H, Shen H, Oprea I et al (2012) β-arrestin-biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor-targeting antibodies in Ewing’s sarcoma. Proc Natl Acad Sci USA 109:20620–20625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zidar DA (2011) Endogenous ligand bias by chemokines: implications at the front lines of infection and leukocyte trafficking. Endocr Metab Immune Disord Drug Targets 11:120–131

    CAS  PubMed  Google Scholar 

  • Zimmerman B, Beautrait A, Aquila B, Charles R et al (2012) Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Sci Signal 5(221):ra33

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Kenakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kenakin, T. (2014). Quantifying Biased β-Arrestin Signaling. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_3

Download citation

Publish with us

Policies and ethics