Skip to main content

Translation-Randomizable Distributions via Random Walks

  • Conference paper
Provable Security (ProvSec 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8209))

Included in the following conference series:

Abstract

This work continues the search for viable intractability assumptions over infinite groups. In particular, we study the possibility of phrasing random self-reducibility properties for infinite groups in an analogous manner to the case of finite groups with the uniform distribution. As a first step, it is natural to look for distributions which are translation-invariant, i.e., the probability of an event and its translate by a group element are the same (as is the case for the uniform distribution). Indeed, this approach has been considered in cryptographic literature by Lee [18], who introduced the concept of right invariance. However, we argue a number of shortcomings for its applicability to cryptography, showing in particular that any computational problem defined on a right-invariant distribution will not yield a better (weaker) intractability assumption than some problem defined over a finite group with the uniform distribution.

Perhaps the problem is simply that translation invariance is too strong of a property to ask of a distribution over an infinite group. Any such distribution is necessarily non-atomic, and the atomic approximations introduced by [18] (universally right invariant distributions) are still insufficient to deliver the desired complexity reductions. However, if a family of distributions is randomizable via translation, this may in fact suffice: one could translate an arbitrary instance by a sample from a known distribution, and obtain a related instance distributed according to a desired base distribution (or something statistically close) – highly analogous to the mode of operation of many random self reductions in cryptography.

Using a novel approach based on random walks, we construct families of such distributions, which are translation-randomizable over infinite groups. The main ingredients in our construction are recurrence (meaning a random walk will invariably return to its origin), and shortcut sampling, which asserts the existence of an efficient method for sampling a long (super-polynomial length) walk. Given a suitable group with these properties (for instance ℤ), we demonstrate how one may formulate problems with random self reducibility properties akin to the familiar setting of finite groups and the uniform distribution.

See [17] for the full version. Work supported in part by NSF grant CNS 1117675 and DPST Research Fund Grant number 041/2555.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information form an oracle. J. Comput. Syst. Sci. 39, 21–50 (1989), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5151

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma over infinite domains. Cryptology ePrint Archive, Report 2012/714 (2012), http://eprint.iacr.org/

  3. Ben-David, S., Chor, B., Goldreich, O., Luby, M.: On the theory of average case complexity. Journal of Computer and system Sciences 44(2), 193–219 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackburn, S.R., Galbraith, S.D.: Cryptanalysis of two cryptosystems based on group actions. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 52–61. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Blass, A., Gurevich, Y.: On the reduction theory for average case complexity. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 17–30. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Blass, A., Gurevich, Y.: Matrix transformation is complete for the average case. SIAM Journal on Computing 24(1), 3–29 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput. 13, 850–864 (1984), http://portal.acm.org/citation.cfm?id=2054.2068

    Article  MathSciNet  MATH  Google Scholar 

  8. Borovik, A., Myasnikov, A., Shpilrain, V.: Measuring sets in infinite groups. Contemporary Mathematics 298, 21–42 (2002)

    Article  MathSciNet  Google Scholar 

  9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)

    Google Scholar 

  10. Feigenbaum, J., Fortnow, L.: On the random-self-reducibility of complete sets. SIAM Journal on Computing 22, 994–1005 (1991), http://www.cs.uchicago.edu/~fortnow/papers/rsr.pdf

    Article  MathSciNet  Google Scholar 

  11. Gennaro, R., Micciancio, D.: Cryptanalysis of a pseudorandom generator based on braid groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 1–13. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, New York (2000)

    Google Scholar 

  13. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Gurevich, Y.: Average case completeness. Journal of Computer and System Sciences 42(3), 346–398 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hughes, J., Tannenbaum, A.: Length-based attacks for certain group based encryption rewriting systems. arXiv preprint cs/0306032 (2003)

    Google Scholar 

  16. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Average-case complexity and decision problems in group theory. Advances in Mathematics 190(2), 343–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khamsemanan, N., Skeith, W.E.: Translation-randomizable distributions via random walks. Tech. rep., The City College of New York, CUNY (2013)

    Google Scholar 

  18. Lee, E.: Right-invariance: A property for probabilistic analysis of cryptography based on infinite groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 103–118. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Lee, E., Park, J.H.: Cryptanalysis of the public-key encryption based on braid groups. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 477–490. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Levin, L.: Problems, complete in average instance. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, p. 465. ACM (1984)

    Google Scholar 

  21. Mairesse, J., Mathéus, F.: Randomly growing braid on three strands and the manta ray. The Annals of Applied Probability, 502–536 (2007)

    Google Scholar 

  22. Myasnikov, A.D., Ushakov, A.: Length based attack and braid groups: Cryptanalysis of anshel-anshel-goldfeld key exchange protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 76–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Pak, I.: Random walks on groups: strong uniform time approach. Ph.D. thesis, Harvard University (1997)

    Google Scholar 

  24. Pak, I.: Random walks on finite groups with few random generators. Electron. J. Probab 4, 1–11 (1999)

    MathSciNet  Google Scholar 

  25. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schuler, R., Yamakami, T.: Structural average case complexity. In: Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 128–139. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  27. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  28. Yamakami, T.: Polynomial time samplable distributions. Journal of Complexity 15(4), 557–574 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khamsemanan, N., Skeith, W.E. (2013). Translation-Randomizable Distributions via Random Walks. In: Susilo, W., Reyhanitabar, R. (eds) Provable Security. ProvSec 2013. Lecture Notes in Computer Science, vol 8209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41227-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41227-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41226-4

  • Online ISBN: 978-3-642-41227-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics