Skip to main content

Asynchronous Multiparty Computation with Linear Communication Complexity

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

Abstract

Secure multiparty computation (MPC) allows a set of n parties to securely compute a function of their private inputs against an adversary corrupting up to t parties. Over the previous decade, the communication complexity of synchronous MPC protocols could be improved to \(\mathcal{O}(n)\) per multiplication, for various settings. However, designing an asynchronous MPC (AMPC) protocol with linear communication complexity was not achieved so far. We solve this open problem by presenting two AMPC protocols with the corruption threshold t < n / 4. Our first protocol is statistically secure (i.e. involves a negligible error) in a completely asynchronous setting and improves the communication complexity of the previous best AMPC protocol in the same setting by a factor of Θ(n). Our second protocol is perfectly secure (i.e. error free) in a hybrid setting, where one round of communication is assumed to be synchronous, and improves the communication complexity of the previous best AMPC protocol in the hybrid setting by a factor of Θ(n 2).

Like other efficient MPC protocols, we employ Beaver’s circuit randomization approach (Crypto ’91) and prepare shared random multiplication triples. However, in contrast to previous protocols where triples are prepared by first generating two random shared values which are then multiplied distributively, in our approach each party prepares its own multiplication triples. Given enough such shared triples (potentially partially known to the adversary), we develop a method to extract shared triples unknown to the adversary, avoiding communication-intensive multiplication protocols. This leads to a framework of independent interest.

Full version of the paper available as Cryptology ePrint Archive, Report 2012/517.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Dolev, D., Halpern, J.: An almost-surely terminating polynomial protocol for asynchronous Byzantine agreement with optimal resilience. In: PODC, pp. 405–414 (2008)

    Google Scholar 

  2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)

    Google Scholar 

  3. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)

    Google Scholar 

  7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  8. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: PODC, pp. 183–192 (1994)

    Google Scholar 

  9. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol. In: PODC, pp. 154–162 (1984)

    Google Scholar 

  11. Canetti, R.: Studies in secure multiparty computation and applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  12. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: STOC, pp. 11–19. ACM (1988)

    Google Scholar 

  13. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Damgård, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: Breaking the \(\mathcal{O}(nm)\) bit barrier, secure multiparty computation with a static adversary. In: PODC, pp. 227–228 (2012)

    Google Scholar 

  16. Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC, pp. 699–710 (1992)

    Google Scholar 

  17. Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-Holland Publishing Company (1978)

    Google Scholar 

  19. Patra, A., Choudhury, A., Rangan, C.P.: Communication efficient perfectly secure VSS and MPC in asynchronous networks with optimal resilience. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 184–202. Springer, Heidelberg (2010); full version available as Cryptology ePrint Archive, Report 2010/007

    Chapter  Google Scholar 

  20. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

    Google Scholar 

  21. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choudhury, A., Hirt, M., Patra, A. (2013). Asynchronous Multiparty Computation with Linear Communication Complexity. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics