Skip to main content

Development of Radioligands for In Vivo Imaging of NMDA Receptors

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

N-methyl-d-aspartate receptors (NMDARs) play an important role in the neurotransmission of the central nervous system (CNS). On the other hand, aberrant functioning of the NMDARs has been implicated in various CNS disorders. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of NMDARs may provide novel insights on CNS functions and various CNS disorders that could lead to the discovery of potential drug therapies. Despite numerous efforts to develop a number of radioligands for NMDARs since the late 1980s, none have been deemed satisfactory as in vivo imaging probes. In this chapter, we summarize the progress in the development of PET and SPECT imaging agents for NMDARs and discuss the prospects in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

% ID/g:

Percent injected dose per gram of tissue

% ID/mL:

Percent injected dose per milliliter of tissue

3MPICA:

3-[2-[(3-methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole-2-carboxylic acid

AD:

Alzheimer’s disease

BBB:

Blood-brain barrier

BP:

Binding potential

CBZ:

Benzyloxycarbonyl

cis-HPTC:

cis-2-hydroxymethyl-r-1-(N-piperidyl)-1-(2-thienyl)cyclohexane

CNS:

Central nervous system

CNS 1261:

N-(1-naphthyl)-N′-(3-iodophenyl)-N′-methylguanidine

CNS 5161:

N-(2-chloro-5-(methylmercapto)phenyl)-N′-methylguanidine monohydrochloride

CP-101,606:

(1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol

DAO:

d-amino acid oxidase

DCKA:

5,7-dichlorokynurenic acid

DTG:

1,3-di-o-tolylguanidine

EMD-95885:

6-3-4-(4-fluorobenzyl)piperidinopropionyl-3H-benzoxazol-2-one

GMOM:

N-(2-chloro-5-thiomethylphenyl)-N′-(3-methoxy-phenyl)-N′-methylguanidine

GV150526A:

3-(2-((phenylamino)carbonyl)ethyenyl)-4,6-dichloroindol-2-carboxylic acid

HON0001:

7-hydroxy-6-methoxy-2-methyl-1-(2-(4-(trifluoromethyl)phenyl)ethyl)-1,2,3,4-tetrahydroisoquinoline hydrochloride

HPLC:

High-performance liquid chromatography

Ifenprodil:

4-[2-(4-benzylpiperidin-1-yl)-1-hydroxypropyl]phenol

Ketamine:

(R,S)-2-(2-chlorophenyl)-2-(methylamino)cyclohexanone

Kryptofix 2.2.2:

4 7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]-hexacosane

L-689,560:

trans-2-carboxy-5,7-dichloro-4-phenylaminocarbonylamino-1,2,3,4-tetrahydroquinoline

L-703,717:

3-[3-(4-methoxybenzyl)phenyl]-4-hydroxy-7-chloroquinolin-2(1H)-one

MDL-104,653:

3-phenyl-4-hydroxy-7-chloro-quinolin-2(1H)-one

MDL-105519:

(Z)-2-carboxy-4,6-dichloroindole-3-(2′-phenyl-2′-carboxy)-ene

MEM:

1-amino-3-fluoromethyl-5-methyl-adamantane

Memantine:

3,5-dimethyladamantan-1-amine

MK-0657:

(3S,4R)-4-methylbenzyl 3-fluoro-4-((pyrimidin-2-ylamino)methyl) piperidine-1-carboxylate

MK-801:

dizocilpine maleate {(+)-10,11-dihydro-5-methyl-5H-dibenzo[a,d] cyclohepten-5,10-diyldiammonium maleate}

NCAM:

N-[2-(N-(2-mercaptoethyl)) amino ethyl]-N-(2-mercaptoethyl)-3,5-dimethyl acetamide amantadine

NHAM:

1-[N-[N-(2-mercaptoethyl)]-N-[2-(2-mercaptoethyl)amino] amino ethyl] amino-3,5-dimethyladamantane

NMDAR:

N-methyl-d-aspartate receptors

NPS 1506:

[3-fluoro-γ-(3-fluorophenyl)-N-methylbenzenepropamine]

PAMQX:

(d)-7-iodo-N-(1-phosphonoethyl)-5-aminomethylquinoxaline-2,3-dione

PCP:

Phencyclidine {1-(1-phenylcyclohexyl) piperidine}

PD:

Parkinson’s disease

PET:

Positron emission tomography

rCBF:

Regional cerebral blood flow

RGH-896:

2-[4-[(4-fluorophenyl)methyl]piperidin-1-yl]-2-oxo-N-(2-oxo-N-3H-1,3-benzoxazol-6-yl)acetamide

Ro 25–6981:

[(±)-(αR,βS)]-α-(4-Hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidine propanol

Ro-647312:

[2-(3,4-dihydro-1H-isoquinolin-2-yl)-pyridin-4-yl]-dimethylamine

SAR:

Structure activity relationship

SPECT:

Single photon emission computed tomography

TCP:

N-[1-(2-Thienyl)cyclohexyl]-3,4-piperidine

TLC:

Thin-layer chromatography

V T :

Total volume of distribution

References

  • Addy C, Assaid C, Hreniuk D et al (2009) Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol 49:856–864

    CAS  PubMed  Google Scholar 

  • Ahmed I, Bose SK, Pavese N et al (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134:979–986

    PubMed  Google Scholar 

  • Akazawa C, Shigemoto R, Bessho Y et al (1994) Differential expression of five N-methyl-d-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347:150–160

    Google Scholar 

  • Ametamey SM, Kokic M, Carrey-Rémy N et al (2000) Synthesis, radiolabelling and biological characterization of (D)-7-iodo- N-(1-phosphonoethyl)-5- aminomethylquinoxaline-2,3-dione, a glycine-binding site antagonist of NMDA receptors. Bioorg Med Chem Lett 10:75–78

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Bruehlmeier M, Kneifel S et al (2002) PET studies of 18F-memantine in healthy volunteers. Nucl Med Biol 29:227–231

    CAS  PubMed  Google Scholar 

  • Andersson Y, Tyrefors N, Sihver S et al (1998) Synthesis of a 11C-labelled derivative of the N-Methyl-d-Aspartate receptor antagonist MK-801. J Label Compd Radiopharm 41:567–576

    CAS  Google Scholar 

  • Anis NA, Berry SC, Burton NR et al (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79:565–575

    CAS  PubMed  Google Scholar 

  • Arstad E, Platzer S, Berthele A et al (2006) Towards NR2B receptor selective imaging agents for PET-synthesis and evaluation of N-[11C]-(2-methoxy)benzyl (E)-styrene-, 2-naphthyl- and 4-trifluoromethoxyphenylamidine. Bioorg Med Chem 14:6307–6313

    CAS  PubMed  Google Scholar 

  • Asselin MC, Hammer A, Turton D et al (2004) Initial kinetic analysis of the in vivo binding of the putative NMDA receptor ligand [11C]CNS 5161 in humans. Neuroimage 22:T137

    Google Scholar 

  • Auberson YP, Acklin P, Bischoff S et al (1999) N-phosphonoalkyl-5- aminomethylquinoxaline-2,3-diones: in vivo active AMPA and NMDA(glycine) antagonists. Bioorg Med Chem Lett 9:249–254

    CAS  PubMed  Google Scholar 

  • Baron BM, Siegel BW, Harrison BL et al (1996) [3H]MDL 105,519, a high-affinity radioligand for the N-methyl-d-aspartate receptor-associated glycine recognition site. J Pharmacol Exp Ther 279:62–68

    CAS  PubMed  Google Scholar 

  • Barta-Szalai G, Borza I, Bozó E et al (2004) Oxamides as novel NR2B selective NMDA receptor antagonists. Bioorg Med Chem Lett 14:3953–3956

    CAS  PubMed  Google Scholar 

  • Bauman A, Piel, M, Höhnemann S et al (2011) Synthesis, labelling and evaluation of hydantoin-substituted indole carboxylic acids as potential ligands for positron emission tomography imaging of the glycine binding site of the N-methyl-d-aspartate receptor. J Label Compd Radiopharm 54:645–656

    Google Scholar 

  • Biegon A, Gibbs A, Alvarado M et al (2007) In vitro and in vivo characterization of [3H]CNS-5161-a use-dependent ligand for the N-methyl-d-aspartate receptor in rat brain. Synapse 61:577–586

    CAS  PubMed  Google Scholar 

  • Blin J, Denis A, Yamaguchi T et al (1991) PET studies of [18F]methyl-MK-801, a potential NMDA receptor complex radioligand. Neurosci Lett 121:183–186

    CAS  PubMed  Google Scholar 

  • Bowery NG, Wong EH, Hudson AL (1988) Quantitative autoradiography of [3H]-MK-801 binding sites in mammalian brain. Br J Pharmacol 93:944–954

    CAS  PubMed  Google Scholar 

  • Bressan RA, Erlandsson K, Mulliganb RS et al (2004) A bolus/infusion paradigm for the novel NMDA receptor SPET tracer [123I]CNS 1261. Nucl Med Biol 31:155–164

    CAS  PubMed  Google Scholar 

  • Bressan RA, Erlandsson K, Stone JM et al (2005) Impact of schizophrenia and chronic antipsychotic treatment on [123I]CNS-1261 binding to N-methyl-d-aspartate receptors in vivo. Biol Psychiatry 58:41–46

    CAS  PubMed  Google Scholar 

  • Brown DR, Wyper DJ, Owens J et al (1997) 123Iodo-MK-801: a SPECT agent for imaging the pattern and extent of glutamate (NMDA) receptor activation in Alzheimer’s disease. J Psychiatr Res 31:605–619

    CAS  PubMed  Google Scholar 

  • Büttelmann B, Alanine A, Bourson A et al (2003) 2-(3,4-Dihydro-1H-isoquinolin-2yl) -pyridines as a novel class of NR1/2B subtype selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:829–832

    PubMed  Google Scholar 

  • Calon F, Rajput AH, Hornykiewicz O et al (2003) Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14:404–416

    CAS  PubMed  Google Scholar 

  • Chaudieu I, Vignon J, Chicheportiche M et al (1989) Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav 32:699–705

    CAS  PubMed  Google Scholar 

  • Chazot PL (2004) The NMDA receptor NR2B subunit: a valid therapeutic target for multiple CNS pathologies. Curr Med Chem 11:389–396

    CAS  PubMed  Google Scholar 

  • Claiborne CF, McCauley JA, Libby BE et al (2003) Orally efficacious NR2B-selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:697–700

    CAS  PubMed  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a, d]cyclohepten-5, 10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2:123–134

    CAS  Google Scholar 

  • Contreras PC, Bremer ME, Gray NM (1990) Ifenprodil and SL 82.0715 potently inhibit binding of [3H](+)-3-PPP to sigma binding sites in rat brain. Neurosci Lett 116:190–193

    CAS  PubMed  Google Scholar 

  • Curtis NR, Diggle HJ, Kulagowski JJ et al (2003) Novel N1-(benzyl)cinnamamidine derived NR2B subtype-selective NMDA receptor antagonists. Bioorg Med Chem Lett 13:693–696

    CAS  PubMed  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    CAS  PubMed  Google Scholar 

  • Di Fabio R, Capelli AM, Conti N et al (1997) Substituted indole-2-carboxylates as in vivo potent antagonists acting as the strychnine-insensitive glycine binding site. J Med Chem 40:841–850

    PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  • Dollé F, Valette H, Demphel S et al (2004) Radiosynthesis and in vivo evaluation of [11C]Ro-647312: a novel NR1/2B subtype selective NMDA receptor radioligand. J Label Compd Radiopharm 47:911–920

    Google Scholar 

  • Dumont F, Slegers G (1997) Synthesis and in vivo evaluation of 7-chloro-5-[123I]iodo-4-oxo-1,4-dihydroquinoline-2-carboxylic acid. Appl Radiat Isot 48:1173–1177

    CAS  PubMed  Google Scholar 

  • Dumont F, Sultana A, Waterhouse RN (2002) Synthesis and in vitro evaluation of N,N′-diphenyl and N-naphthyl-N′-phenylguanidines as N-methyl-d-aspartate receptor ion-channel ligands. Bioorg Med Chem Lett 12:1583–1586

    CAS  PubMed  Google Scholar 

  • Eckelman WC, Gibson RE, Rzeszotarski WJ et al (1979) The design of receptor binding radiotracers. In: Principles of radiopharmacology. CRC Press, New York, pp 251–274

    Google Scholar 

  • Eckelman WC, Kilbourn MR, Mathis CA (2006) Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:449–451

    CAS  PubMed  Google Scholar 

  • Erlandsson K, Bressanb RA, Mulligana RS et al (2003) Kinetic modelling of [123I]CNS 1261—a potential SPET tracer for the NMDA receptor. Nucl Med Biol 30:441–454

    CAS  PubMed  Google Scholar 

  • Forst T, Smith T, Schütte K et al (2007) CNS 5161 Study Group. Dose escalating safety study of CNS 5161 HCl, a new neuronal glutamate receptor antagonist (NMDA) for the treatment of neuropathic pain. Br J Clin Pharmacol 64:75–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foster AC, Wong EH (1987) The novel anticonvulsant MK-801 binds to the activated state of the N-methyl-d-aspartate receptor in rat brain. Br J Pharmacol 91:403–409

    CAS  PubMed  Google Scholar 

  • Fuchigami T, Haradahira T, Arai T et al (2003) Synthesis and brain regional distribution of [11C]NPS 1506 in mice and rat: an N-methyl-d-aspartate (NMDA) receptor antagonist. Biol Pharm Bull 26:1570–1573

    CAS  PubMed  Google Scholar 

  • Fuchigami T, Haradahira T, Fujimoto N et al (2008) Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel. Nucl Med Biol 35:203–212

    CAS  PubMed  Google Scholar 

  • Fuchigami T, Haradahira T, Fujimoto N et al (2009) Development of N-[11C] methylamino 4-hydroxy-2(1H)-quinolone derivatives as PET radioligands for the glycine-binding site of NMDA receptors. Bioorg Med Chem 17:5665–5675

    CAS  PubMed  Google Scholar 

  • Fuchigami T, Yamaguchi H, Ogawa M et al (2010) Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor. Bioorg Med Chem 18:7497–7506

    CAS  PubMed  Google Scholar 

  • Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22:2873–2885

    CAS  PubMed  Google Scholar 

  • Furukawa H, Singh SK, Mancusso R et al (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185–192

    CAS  PubMed  Google Scholar 

  • Gogas KR (2006) Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 6:68–74

    CAS  PubMed  Google Scholar 

  • Grauert M, Bechtel WD, Ensinger HA et al (1997) Synthesis and structure-activity relationships of 6,7-benzomorphan derivatives as antagonists of the NMDA receptor-channel complex. J Med Chem 40:2922–2930

    CAS  PubMed  Google Scholar 

  • Grauert M, Rho JM, Subramaniam S et al (1998) N-methyl-d-aspartate receptor channel block by the enantiomeric 6,7-benzomorphans BIII 277 CL and BIII 281 CL. J Pharmacol Exp Ther 285:767–776

    CAS  PubMed  Google Scholar 

  • Grimwood S, Richards P, Murray F et al (2000) Characterisation of N-methyl-d-aspartate receptor-specific [3H]Ifenprodil binding to recombinant human NR1a/NR2B receptors compared with native receptors in rodent brain membranes. J Neurochem 75:2455–2463

    CAS  PubMed  Google Scholar 

  • Haradahira T, Sasaki S, Maeda M et al (1998) Synthesis and brain distribution of carbon-11 labeled analogs of antagonists for the NMDA receptor coupled PCP-binding site. J Label Compd Radiopharm 41:843–858

    CAS  Google Scholar 

  • Haradahira T, Suzuki K et al (1999) An improved synthesis of [11C]L-703,717 as a radioligand for the glycine site of the NMDA receptor. Nucl Med Biol 26:245–247

    CAS  PubMed  Google Scholar 

  • Haradahira T, Zhang M, Maeda J et al (2000) A strategy for increasing the brain uptake of a radioligand in animals: use of a drug that inhibits plasma protein binding. 27:357–360

    Google Scholar 

  • Haradahira T, Zhang MR, Maeda J et al (2001) A prodrug of NMDA/glycine site antagonist, L-703,717, with improved BBB permeability: 4-acetoxy derivative and its positron-emitter labeled analog. Chem Pharm Bull (Tokyo) 49:147–150

    CAS  Google Scholar 

  • Haradahira T, Maeda J, Okauchi T et al (2002a) Synthesis, in vitro and in vivo pharmacology of a C-11 labeled analog of CP-101,606, (+/−)threo-1-(4-hydroxyphenyl) -2-[4-hydroxy-4-(p-[11C]methoxyphenyl)piperidino]-1-propanol, as a PET tracer for NR2B subunit-containing NMDA receptors. Nucl Med Biol 29:517–525

    CAS  PubMed  Google Scholar 

  • Haradahira T, Okauchi T, Maeda J et al (2002b) A positron-emitter labeled glycine(B) site antagonist, [11C]L-703,717, preferentially binds to a cerebellar NMDA receptor subtype consisting of GluR epsilon3 subunit in vivo, but not in vitro. Synapse 43:131–133

    CAS  PubMed  Google Scholar 

  • Haradahira T, Suhara S, Okauchi T et al (2002c) Developments of PET radioligands for NMDA receptors. World J Nucl Med 1:S183–S184

    Google Scholar 

  • Haradahira T, Okauchi T, Maeda J et al (2003) Effects of endogenous agonists, glycine and d-serine, on in vivo specific binding of [11C]L-703,717, a PET radioligand for the glycine-binding site of NMDA receptors. Synapse 50:130–136

    CAS  PubMed  Google Scholar 

  • Haradahira T, Fuchigami T, Fujimoto N et al (2005) In vitro and in vivo binding characteristics of C-11 labeled antagonists for NR2B subunit of NMDA receptors. J Label Compd Radiopharm 48(suppl. 1):S92

    Google Scholar 

  • Hartvig P, Valtysson J, Antoni G et al (1994) Brain kinetics of (R)-and (S)-[N-methyl-11C]ketamine in the rhesus monkey studied by positron emission tomography (PET). Nucl Med Biol 21:927–934

    CAS  PubMed  Google Scholar 

  • Hashimoto K, London ED (1995) Interactions of erythro-ifenprodil, threo-ifenprodil, erythro-iodoifenprodil, and eliprodil with subtypes of sigma receptors. Eur J Pharmacol 273:307–310

    CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T et al (1993) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    CAS  PubMed  Google Scholar 

  • Hayashi T, Thomas GM, Huganir RL (2009) Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 64:213–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu LY, Guo J, Magar SS et al (1997) Synthesis and pharmacological evaluation of N-(2,5-disubstituted phenyl)-N′-(3-substituted phenyl)-N′-methylguanidines as N-methyl -d-aspartate receptor ion-channel blockers. J Med Chem 40:4281–4289

    CAS  PubMed  Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004) Differential expression of N-methyl-D-aspartate receptor NR2 isoforms in Alzheimer’s disease. J Neurochem 90:913–919

    CAS  PubMed  Google Scholar 

  • Ishibashi N, Kuwamura T, Sano H et al (2000) Synthesis and evaluation of 18F- and 11C-labelled 9,10-ethanobenzo[b]quinolizinium derivatives for imaging of the NMDA receptor at the TCP-binding site. J Label Compd Radiopharm 43:375–383

    CAS  Google Scholar 

  • Jacob CP, Koutsilieri E, Bartl J (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11:97–116

    CAS  PubMed  Google Scholar 

  • Jahr CE (1992) High probability opening of NMDA receptor channels by L-glutamate. Science 255:470–472

    CAS  PubMed  Google Scholar 

  • Kalia LV, Kalia SK, Salter MW (2008) NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol 7:742–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kantrowitz JT, Javitt DC (2010) N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 83(3–4):108–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karakas E, Simorowski N, Furukawa H (2009) Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28:3910–3920

    CAS  PubMed  Google Scholar 

  • Karakas E, Simorowski N, Furukawa H (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475:249–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karbon EW, Patch RJ, Pontecorvo MJ et al (1990) Ifenprodil potently interacts with [3H](+)-3-PPP-labeled sigma binding sites in guinea pig brain membranes. Eur J Pharmacol 176:247–248

    CAS  PubMed  Google Scholar 

  • Kashiwagi K, Pahk AJ, Masuko T et al (1997) Block and modulation of N-methyl-d-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol 52:701–713

    CAS  PubMed  Google Scholar 

  • Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci 5(Suppl):1039–1042

    CAS  PubMed  Google Scholar 

  • Kew JN, Trube G, Kemp JA (1996) A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol 497:761–772

    CAS  PubMed  Google Scholar 

  • Knol RJ, de Bruin K, van Eck-Smit BL (2009) In vivo [123I]CNS-1261 binding to d-serine-activated and MK801-blocked NMDA receptors: a storage phosphor imaging study in rats. Synapse 63:557–564

    CAS  PubMed  Google Scholar 

  • Köhr G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326:439–446

    PubMed  Google Scholar 

  • Kokic M, Honer M, Kessler LJ et al (2002) Synthesis and in vitro and in vivo evaluation of [11C]methyl-BIII277CL for imaging the PCP-binding site of the NMDA receptor by PET. J Recept Signal Transduct Res 22:123–139

    CAS  PubMed  Google Scholar 

  • Koudih R, Gilbert G, Dhilly M et al (2012) Synthesis and in vitro characterization of trans- and cis-[18F]-4-methylbenzyl 4-[(pyrimidin-2-ylamino)methyl]-3- fluoropiperidine-1-carboxylates as new potential PET radiotracer candidates for the NR2B subtype N-methyl-d-aspartate receptor. Eur J Med Chem 53C:408–415

    Google Scholar 

  • Kulagowski JJ, Baker R, Curtis NR et al (1994) 3′-(Arylmethyl)- and 3′-(aryloxy)-3-phenyl-4-hydroxyquinolin-2(1H)-ones: orally active antagonists of the glycine site on the NMDA receptor. J Med Chem 37:1402–1405

    CAS  PubMed  Google Scholar 

  • Kuryatov A, Laube B, Betz H et al (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300

    CAS  PubMed  Google Scholar 

  • Labas R, Sobrio F, Bramoullé Y et al (2010) Radiosynthesis of N-[4-(4-fluorobenzyl) piperidin-1-yl]-N′-(2-[11C]oxo-1,3-dihydrobenzimidazol-5-yl)oxamide, a NR2B- selective NMDA receptor antagonist. J Label Compd Radiopharm 53:63–67

    CAS  Google Scholar 

  • Labas R, Gilbert G, Nicole O et al (2011) Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem 46:2295–2309

    CAS  PubMed  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542

    CAS  PubMed  Google Scholar 

  • Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8:413–426

    CAS  PubMed  Google Scholar 

  • Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18:2954–2961

    CAS  PubMed  Google Scholar 

  • Leeson PD, Baker R, Carling RW et al (1991) Kynurenic acid derivatives. Structure-activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the N-methyl-d-aspartate receptor. J Med Chem 34:1243–1252

    CAS  PubMed  Google Scholar 

  • Leeson PD, Carling RW, Moore KW et al (1992) 4-Amido-2- carboxytetrahydroquinolines. Structure-activity relationships for antagonism at the glycine site of the NMDA receptor. J Med Chem 35:1954–1968

    CAS  PubMed  Google Scholar 

  • Leibrock J, Prücher H, Rautenberg W et al (1997) EMD 95885, a new eliprodil analogue with higher affinity for the N-methyl-d-aspartate (NMDA) receptor. Pharmazie 52:479–480

    CAS  PubMed  Google Scholar 

  • Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100:665–677

    CAS  PubMed  Google Scholar 

  • Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6(6 Suppl):S61–S74

    CAS  PubMed  Google Scholar 

  • Lodge D, Johnson KM (1990) Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol Sci 11:81–86

    CAS  PubMed  Google Scholar 

  • Loo P, Braunwalder A, Lehmann J et al (1986) Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur J Pharmacol 123:467–468

    CAS  PubMed  Google Scholar 

  • Low CM, Wee KS (2010) New insights into the not-so-new NR3 subunits of N-methyl-d-aspartate receptor: localization, structure, and function. Mol Pharmacol 78:1–11

    CAS  PubMed  Google Scholar 

  • Malherbe P, Mutel V, Broger C et al (2003) Identification of critical residues in the amino terminal domain of the human NR2B subunit involved in the RO 25–6981 binding pocket. J Pharmacol Exp Ther 307:897–905

    CAS  PubMed  Google Scholar 

  • Mallamo JP, Earley WG, Kumar V et al (1994) Identification, synthesis, and characterization of a unique class of N-methyl-d-aspartate antagonists. The 6,11-ethanobenzo[b]quinolizinium cation. J Med Chem 37:4438–4448

    CAS  PubMed  Google Scholar 

  • Matsumoto R, Haradahira T, Ito H et al (2007) Measurement of glycine binding site of N-methyl-D-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11C] methoxybenzyl) phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography. Synapse 61:795–800

    CAS  PubMed  Google Scholar 

  • Matsumura K, Bergström M, Onoe H et al (1995) In vitro positron emission tomography (PET): use of positron emission tracers in functional imaging in living brain slices. Neurosci Res 22:219–229

    CAS  PubMed  Google Scholar 

  • McCauley JA, Theberge CR, Romano JJ et al (2004) NR2B-selective N-methyl-d-aspartate antagonists: synthesis and evaluation of 5-substituted benzimidazoles. J Med Chem 47:2089–2096

    CAS  PubMed  Google Scholar 

  • Menniti F, Chenard B, Collins M et al (1997) CP-101,606, a potent neuroprotectant selective for forebrain neurons. Eur J Pharmacol 331:117–126

    CAS  PubMed  Google Scholar 

  • Millan MJ (2005) N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 179:30–53

    CAS  Google Scholar 

  • Mony L, Kew JN, Gunthorpe MJ et al (2009) Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 157:1301–1317

    CAS  PubMed  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    CAS  PubMed  Google Scholar 

  • Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    CAS  PubMed  Google Scholar 

  • Morris HJ, Luthra SK, Brown DJ et al (1997) Synthesis of [11C]L-703,717, a potential ligand for PET studies of the glycine site of the NMDA receptor. J Label Compd Radiopharm 40:640–641

    Google Scholar 

  • Mott DD, Doherty JJ, Zhang S et al (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1:659–667

    CAS  PubMed  Google Scholar 

  • Mueller AL, Artman LD, Balandrin MF et al (1999) NPS 1506, a novel NMDA receptor antagonist and neuroprotectant. Review of preclinical and clinical studies. Ann N Y Acad Sci 890:450–457

    CAS  PubMed  Google Scholar 

  • Mutel V, Buchy D, Klingelschmidt A et al (1998) In vitro binding properties in rat brain of [3H]Ro 25–6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem 70:2147–2155

    CAS  PubMed  Google Scholar 

  • Oh JD, Russell DS, Vaughan CL et al (1998) Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res 813:150–159

    CAS  PubMed  Google Scholar 

  • Orita K, Sasaki S, Maeda M et al (1993) Synthesis and evaluation of 1-(1-[5-(2′-[18F]fluoroethyl)-2-thienyl]-cyclohexyl)piperidine as a potential in vivo radioligand for the NMDA receptor-channel complex. Nucl Med Biol 20:865–873

    CAS  PubMed  Google Scholar 

  • Ouyang X, Mukherjee J, Yang ZY (1996) Synthesis, radiosynthesis, and biological evaluation of fluorinated thienylcyclohexyl piperidine derivatives as potential radiotracers for the NMDA receptor-linked calcium ionophore. Nucl Med Biol 23:315–324

    CAS  PubMed  Google Scholar 

  • Owens J, Wyper DJ, Patterson J et al (1997) First SPET images of glutamate (NMDA) receptor activation in vivo in cerebral ischaemia. Nucl Med Commun 18:149–158

    CAS  PubMed  Google Scholar 

  • Owens J, Tebbutt AA, McGregor AL et al (2000) Synthesis and binding characteristics of N-(1-naphthyl)-N′-(3-[125I]-iodophenyl)-N′-methylguanidine ([125I]-CNS 1261): a potential SPECT agent for imaging NMDA receptor activation. Nucl Med Biol 27:557–564

    CAS  PubMed  Google Scholar 

  • Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213

    CAS  PubMed  Google Scholar 

  • Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    CAS  PubMed  Google Scholar 

  • Parsons CG, Gruner R, Rozental J et al (1993) Patch clamp studies on the kinetics and selectivity of N-methyl-d-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantane). Neuropharmacology 32:1337–1350

    CAS  PubMed  Google Scholar 

  • Piel M, Schirrmacher R, Höhnemann S et al (2003) Synthesis and evaluation of 5,7-dichloro-4-(3-{4-[4-(2-[18F]fluoroethyl)-piperazin-1-yl]-phenyl}-ureido)-1,2,3,4-tetrahydroquinoline-2-carboxylic acid as a potential NMDA ligand to study glutamatergic neurotransmission in vivo. J Label Compd Radiopharm 46:645–659

    CAS  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilowsky LS, Bressan RA, Stone JM et al (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119

    CAS  PubMed  Google Scholar 

  • Price GW, Ahier RG, Middlemiss DN et al (1988) In vivolabelling of the NMDA receptor channel complex by [3H]MK-801. Eur J Pharmacol 158:279–282

    Google Scholar 

  • Rachline J, Le Perin-Dureau F, Goff A et al (2005) The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J Neurosci 25:308–317

    CAS  PubMed  Google Scholar 

  • Ransom RW, Eng WS, Burns HD et al (1990) (+)-3-[123I]Iodo-MK-801: synthesis and characterization of binding to the N-methyl-d-aspartate receptor complex. Life Sci 46:1103–1110

    CAS  PubMed  Google Scholar 

  • Reddy NL, Hu LY, Cotter RE et al (1994) Synthesis and structure-activity studies of N, N′-diarylguanidine derivatives N-(1-naphthyl)-N′-(3-ethylphenyl)-N′- methylguanidine: a new, selective noncompetitive NMDA receptor antagonist. J Med Chem 37:260–267

    CAS  PubMed  Google Scholar 

  • Riedel G, Platt B et al (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47

    CAS  PubMed  Google Scholar 

  • Robins EG, Zhao Y, Khan I et al (2010) Synthesis and in vitro evaluation of 18F-labelled S-fluoroalkyl diarylguanidines: novel high-affinity NMDA receptor antagonists for imaging with PET. Bioorg Med Chem Lett 20:1749–1751

    CAS  PubMed  Google Scholar 

  • Roche KW, Standley S, McCallum J et al (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802

    CAS  PubMed  Google Scholar 

  • Roger G, Lagnel B, Besret L et al (2003) Synthesis, radiosynthesis and in vivo evaluation of 5-[3-(4-benzylpiperidin-1-yl)prop-1-ynyl]-1,3-dihydrobenzoimidazol-2- [11C] one, as a potent NR1A/2B subtype selective NMDA PET radiotracer. Bioorg Med Chem 11:5401–5408

    CAS  PubMed  Google Scholar 

  • Roger G, Dollé F, De Bruin B et al (2004) Radiosynthesis and pharmacological evaluation of [11C]EMD-95885: a high affinity ligand for NR2B-containing NMDA receptors. Bioorg Med Chem 12:3229–3237

    CAS  PubMed  Google Scholar 

  • Rowley M, Kulagowski JJ, Watt AP et al (1997) Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 40:4053–4068

    CAS  PubMed  Google Scholar 

  • Samnick S, Ametamey S, Leenders KL et al (1998) Electrophysiological study, biodistribution in mice, and preliminary PET evaluation in a rhesus monkey of 1-amino-3-[18F]fluoromethyl-5-methyl-adamantane (18F-MEM): a potential radioligand for mapping the NMDA-receptor complex. Nucl Med Biol 25:323–330

    CAS  PubMed  Google Scholar 

  • Sasaki S, Ishibashi N, Kuwamura T et al (1998) Excellent acceleration of the Diels-Alder reaction by microwave irradiation for the synthesis of new fluorine-substituted ligands of NMDA receptor. Bioorg Med Chem Lett 8:2983–2986

    CAS  PubMed  Google Scholar 

  • Sasaki S, Kanda T, Ishibashi N et al (2001) 4,5,9,10-Tetrahydro-1,4-ethanobenz[b] quinolizine as a prodrug for its quinolizinium cation as a ligand to the open state of the TCP-binding site of NMDA receptors. Bioorg Med Chem Lett 11:519–521

    CAS  PubMed  Google Scholar 

  • Sasaki S, Kurosaki F, Haradahira T et al (2004) Synthesis of 11C-labelled bis(phenylalkyl)amines and their in vitro and in vivo binding properties in rodent and monkey brains. Biol Pharm Bull 27:531–537

    CAS  PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schell MJ, Brady RO Jr, Molliver ME et al (1997) d-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

    CAS  PubMed  Google Scholar 

  • Shibayama Y, Sasaki S, Tomita U et al (1996) Synthesis and evaluation of new 18F-labelled thienylcyclohexylpiperidine (TCP) analogues as radioligands for the NMDA receptor-channel complex. J Label Compd Radiopharm 38:77–86

    CAS  Google Scholar 

  • Shiue CY, Vallabhahosula S, Wolf AP et al (1997) Carbon-11 labelled ketaminesynthesis, distribution in mice and PET studies in baboons. Nucl Med Biol 24:145–150

    CAS  PubMed  Google Scholar 

  • Sihver S, Sihver W, Andersson Y et al (1998) In vitro and in vivo characterization of (+)-3-[11C]cyano-dizocilpine. J Neural Transm 105:117–131

    CAS  PubMed  Google Scholar 

  • Silver IA, Erecińska M (1992) Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab 12:759–772

    CAS  PubMed  Google Scholar 

  • Sobrio F, Gilbert G, Perrio C et al (2010) PET and SPECT imaging of the NMDA receptor system: an overview of radiotracer development. Mini Rev Med Chem 10:870–886

    CAS  PubMed  Google Scholar 

  • Stone JM, Erlandsson K, Arstad E et al (2006) Ketamine displaces the novel NMDA receptor SPET probe [123I]CNS-1261 in humans in vivo. Nucl Med Biol 33:239–243

    CAS  PubMed  Google Scholar 

  • Stone JM, Erlandsson K, Arstad E et al (2008) Relationship between ketamine-induced psychotic symptoms and NMDA receptor occupancy: a [123I]CNS-1261 SPET study. Psychopharmacology (Berl) 197:401–408

    CAS  Google Scholar 

  • Suetake-Koga S, Shimazaki T, Takamori K et al (2006) In vitro and antinociceptive profile of HON0001, an orally active NMDA receptor NR2B subunit antagonist. Pharmacol Biochem Behav 84:134–141

    CAS  PubMed  Google Scholar 

  • Tamiz AP, Whittemore ER, Zhou ZL et al (1998) Structure-activity relationships for a series of bis(phenylalkyl)amines: potent subtype-selective inhibitors of N-methyl-d-aspartate receptors. J Med Chem 41:3499–3506

    CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    CAS  PubMed  Google Scholar 

  • Tsukiyama S, Hashimoto A, Katayama S et al (1991) Fluoromethylated and hydroxymethylated derivatives of N-methyl-d-aspartate receptor antagonist 1-[1-(2-thienyl)cyclohexyl]piperidine. Chem Pharm Bull (Tokyo) 39:1581–1584

    CAS  Google Scholar 

  • Ulbrich MH, Isacoff EY (2008) Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci U S A 105:14163–14168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallano ML, Lambolez B, Audinat E et al (1996) Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. J Neurosci 16:631–639

    CAS  PubMed  Google Scholar 

  • Vincent JP, Kartalovski B, Geneste P et al (1979) Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes. Proc Natl Acad Sci U S A 76:4678–4682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vrajová M, Stastný F, Horácek J et al (2010) Expression of the hippocampal NMDA receptor GluN1 subunit and its splicing isoforms in schizophrenia: postmortem study. Neurochem Res 35:994–1002

    PubMed  Google Scholar 

  • Wafford KA, Kathoria M, Bain CJ et al (1995) Identification of amino acids in the N-methyl-d-aspartate receptor NR1 subunit that contribute to the glycine-binding site. Mol Pharmacol 47:374–380

    CAS  PubMed  Google Scholar 

  • Walters MR, Bradford APJ, Fischer J et al (2002) Early clinical experience with the novel NMDA receptor antagonist CNS 5161. Br J Clin Pharmacol 53:305–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterhouse RN (2003a) Imaging the PCP site of the NMDA ion channel. Nucl Med Biol 30:869–878

    CAS  PubMed  Google Scholar 

  • Waterhouse RN (2003b) Determination of lipophilicity and its use as a predictor of blood–brain barrier penetration of molecular imaging agents. Mol Imaging Biol 5:376–389

    PubMed  Google Scholar 

  • Waterhouse RN, Sultana A, Guo N et al (2002a) Synthesis and characterization of 4,6-dichloroindole-based radioligands for imaging the glycine site of the NMDA ion channel. J Label Compd Radiopharm 45:91–102

    CAS  Google Scholar 

  • Waterhouse RN, Sultana A, Laruelle M et al (2002b) In vivo evaluation of [11C]-3-[2-[(3-methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole-2-carboxylic acid ([11C]3MPICA) as a PET radiotracer for the glycine site of the NMDA ion channel. Nucl Med Biol 29:791–794

    CAS  PubMed  Google Scholar 

  • Waterhouse RN, Slifstein M, Dumont F et al (2004) In vivo evaluation of [11C]N-(2-chloro-5- thiomethylphenyl)-N′-(3-methoxy-phenyl)-N′-methylguanidine ([11C] GMOM) as a potential PET radiotracer for the PCP/NMDA receptor. Nucl Med Biol 31:939–948

    Google Scholar 

  • Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851–859

    CAS  PubMed  Google Scholar 

  • Wong EH, Kemp JA, Priestley T et al (1986) The anticonvulsant MK-801 is a potent N-methyl-d-aspartate antagonist. Proc Natl Acad Sci U S A 83:7104–7108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong EH, Knight AR, Woodruff GN (1988) [3H]MK-801 labels a site on the N-methyl-d-aspartate receptor channel complex in rat brain membranes. J Neurochem 50:274–281

    CAS  PubMed  Google Scholar 

  • Wright JL, Gregory TF, Kesten SR et al (2000) Subtype-selective N-methyl-d-aspartate receptor antagonists: synthesis and biological evaluation of 1-(heteroarylalkynyl)- 4-benzylpiperidines. J Med Chem 43:3408–3419

    CAS  PubMed  Google Scholar 

  • Yao Y, Harrison CB, Freddolino PL et al (2008) Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J 27:2158–2170

    CAS  PubMed  Google Scholar 

  • Zhao Y, Robins E, Turton D et al (2006) Synthesis and characterization of N-(2-chloro-5-methylthiophenyl)-N′-(3-methylthiophenyl)-N′-[11C]methylguanidine [11C]CNS 5161, a candidate PET tracer for functional imaging of NMDA receptors. J Label Compd Radiopharm 49:163–170

    CAS  Google Scholar 

  • Zhou X, Zhang J, Yan C et al (2012) Preliminary studies of 99mTc-memantine derivatives for NMDA receptor imaging. Nucl Med Biol 39:1034–1041

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Magata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchigami, T., Nakayama, M., Magata, Y. (2014). Development of Radioligands for In Vivo Imaging of NMDA Receptors. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics