Skip to main content

Spatio-temporal EEG Data Classification in the NeuCube 3D SNN Environment: Methodology and Examples

  • Conference paper
Neural Information Processing (ICONIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8228))

Included in the following conference series:

Abstract

A vast amount of complex spatio-temporal brain data, such as EEG-, have been accumulated. Technological advances in many disciplines rely on the proper analysis, understanding and utilisation of these data. In order to address this great challenge, the paper utilizes the recently introduced by one of the authors 3D spiking neural network environment called NeuCube for spatio-temporal EEG data classification. A methodology is proposed and illustrated on two small-scale examples: classifying EEG data for music- versus noise perception, and person identification based on music perception. Future development and usage of the NeuCube environment can be expected to significantly further the creation of novel brain-computer interfaces, cognitive robotics and medical engineering devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zillies, K., Amunts, K.: Centenary of Brodmann’s map – conception and fate. Nature Reviews Neuroscience 11, 139–145 (2010)

    Article  Google Scholar 

  2. Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System - an Approach to Cerebral Imaging. Thieme Medical Publishers, NY (1988)

    Google Scholar 

  3. Evans, A.C., Collins, D.L., Mills, S.R., et al.: 3D statistical neuroanatomical models from 305 MRI volumes. In: Proc. IEEE-Nuclear Science Symp. Medical Imaging Conference, pp. 1813–1817 (1993)

    Google Scholar 

  4. Toga, A., Thompson, P., Mori, S., et al.: Towards multimodal atlases of the human brain. Nature Reviews Neuroscience 7, 952–966 (2006)

    Article  Google Scholar 

  5. Abeles, M.: Corticonics. Cambridge University Press, NY (1991)

    Book  Google Scholar 

  6. Fiasché, M., Schliebs, S., Nobili, L.: Integrating Neural Networks and Chaotic Measurements for Modelling Epileptic Brain. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 653–660. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), 1–15 (2007)

    Article  Google Scholar 

  8. Stam, C.J.: Functional connectivity patterns of human magnetoencephalographic recordings: A small-world network? Neurosci. Lett. 355, 25–28 (2004)

    Article  Google Scholar 

  9. De Charms, R.C.: Applications of real-time fMRI. Nature Reviews Neuroscience 9, 720–729 (2008)

    Article  Google Scholar 

  10. Mitchel, T., Hutchinson, R., et al.: Learning to Decode Cognitive States from Brain Images. Machine Learning 57, 145–175 (2004)

    Article  Google Scholar 

  11. Broderson, K., Wiech, K., Lomakina, E., et al.: Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)

    Article  Google Scholar 

  12. Hawrylycz, M., et al.: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

    Article  Google Scholar 

  13. Gerstner, W., Sprekeler, H., Deco, G.: Theory and simulation in neuroscience. Science 338, 60–65 (2012)

    Article  Google Scholar 

  14. Song, S., Miller, K., Abbott, L., et al.: Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  15. Thorpe, S., Gautrais, J.: Rank order coding. Comput. Neuroscience: Trends in Research 13, 113–119 (1998)

    Article  Google Scholar 

  16. Maass, W., Natschlaeger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  17. Izhikevich, E.: Polychronization: Computation with Spikes. Neural Computation 18, 245–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in Design and Application of Spiking Neural Networks. Soft Comput. 11(3), 239–248 (2006)

    Article  MathSciNet  Google Scholar 

  19. Gerstner, W.: What’s different with spiking neurons? In: Mastebroek, H., Vos, H. (eds.) Plausible Neural Networks for Biological Modelling, pp. 23–48. Kluwer Academic Publishers (2001)

    Google Scholar 

  20. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128x128 120dB 30mW Asynchronous Vision Sensor that Responds to Relative Intensity Changes. ISSCC Digest of Technical Papers, pp. 508–509 (2006)

    Google Scholar 

  21. Liu, S.C., Delbruck, T.: Neuromorphic sensory systems. Curr. Opinion in Neurobiology 20(3), 288–295 (2010)

    Article  Google Scholar 

  22. Benuskova, L., Kasabov, N.: Computational neuro-genetic modelling. Springer, New York (2007)

    Book  Google Scholar 

  23. Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neur. Netw. 23(1), 16–19 (2010)

    Article  Google Scholar 

  24. Furber, S.: To Build a Brain. IEEE Spectrum 49(8), 39–41 (2012)

    Article  Google Scholar 

  25. Indiveri, G., Horiuchi, T.K.: Frontiers in neuromorphic engineering. Frontiers in Neuroscience 5, 1–2 (2011)

    Google Scholar 

  26. Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic Evolving Spiking Neural Networks for On-line Spatio- and Spectro-Temporal Pattern Recognition. Neural Networks 41, 188–201 (2013)

    Article  Google Scholar 

  27. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Sequences. Int. J. of Neural Systems 22(4), 1–16 (2012)

    Google Scholar 

  28. Kasabov, N.: NeuCube EvoSpike Architecture for Spatio-Temporal Modelling and Pattern Recognition of Brain Signals. In: Mana, N., Schwenker, F., Trentin, E. (eds.) ANNPR 2012. LNCS (LNAI), vol. 7477, pp. 225–243. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Kasabov, N.: Evolving connectionist systems: The knowledge engineering approach. Springer (2007)

    Google Scholar 

  30. Koessler, L., Maillard, L., Benhadid, A., et al.: Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2006)

    Article  Google Scholar 

  31. Kasabov, N.: Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition. In: Liu, J., Alippi, C., Bouchon-Meunier, B., Greenwood, G.W., Abbass, H.A. (eds.) WCCI 2012. LNCS, vol. 7311, pp. 234–260. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasabov, N., Hu, J., Chen, Y., Scott, N., Turkova, Y. (2013). Spatio-temporal EEG Data Classification in the NeuCube 3D SNN Environment: Methodology and Examples. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42051-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42051-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42050-4

  • Online ISBN: 978-3-642-42051-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics