Skip to main content

Spatial Anisotropic Interpolation Approach for Text Removal from an Image

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8271))

Abstract

We propose a Spatial Anisotropic Interpolation (SAI) based, Design and Analysis of Computer Experiment (DACE) model for inpainting the gaps that are induced by the removal of text from images. The spatial correlation among the design data points is exploited, leading to a model which produces estimates with zero variance at all design points. Incorporating such a feature turns the model to serve as a surrogate for predicting the response at desired points where experiment is not carried out. This property has been tuned for the purpose of gap filling in images also called as Image Inpainting, while treating the pixel values as responses. The proposed methodology restores the structural as well as textural characteristics of input image. Experiments are carried out with this methodology and results are demonstrated using quality metrics such as SSIM and PSNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: ACM SIGGRAPH 2000 Conference Proceedings, pp. 417–424 (2000)

    Google Scholar 

  2. Chan, T.F., Shen, J.: Non-texture inpainting by curvature driven diffusion. JVCIR 12(4), 436–449 (2001)

    Google Scholar 

  3. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature based inpainting. SIAM J. App. Math. 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Getreuer, P.: Total Variation Inpainting using Split Bregman. Image Processing On Line, ISSN 2105 1232 c IPOL & (the authors CCBYNCSA on July 30, 2012)

    Google Scholar 

  5. Chandra, S., Petrou, M., Piroddi, R.: Texture interpolation Using Ordinary Kriging. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 183–190. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Tauber Z., Li Z N., Drew.: Review and Preview: Disocclusion by inpainting for image-based rendering. IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(4) (2007)

    Google Scholar 

  7. Bertalmio, M., Vesa, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE Transactions on Image Processing 8, 882 (2003)

    Article  Google Scholar 

  8. Bugeau, A., Bertalmio, M., Caselles, V., Sapiro, G.: A Comprehensive framework for image inpainting. IEEE Trans. on Image Processing 19(10), 2634–2645 (2010)

    Article  MathSciNet  Google Scholar 

  9. Elad, M., Starck, J., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Applied Computational Harmonic Analysis 19, 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. International Journal of Computer Vision 70(1), 41–54 (2006)

    Article  Google Scholar 

  11. Chen, S., Tong, H., Wang, Z., Liu, S., Li, M., Zhang, B.: Improved generalized belief propagation for vision processing. In: Mathematical Problems in Engineering. Hindawi Publishing Corporation, 2011 (2010)

    Google Scholar 

  12. Komodakis, N., Georgios, T.: Image Completion Using Efficient Belief Propagation via Priority Scheduling and Dynamic Pruning. IEEE Trans. Image Process., 2649–2661 (2007)

    Google Scholar 

  13. Richard, S.: A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (June 2008)

    Google Scholar 

  14. Roth, S., Black, M.J.: Fields of experts. International Journal of Computer Vision 82(2), 205–209 (2009)

    Article  Google Scholar 

  15. Wu, R., Srikant, R., Ni, J.: Learning graph structures in discrete Markov random fields. In: INFOCOM Workshops, pp. 214–219 (2012)

    Google Scholar 

  16. Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer (2003)

    Google Scholar 

  17. Lophaven, N., Nielsen, H.B., Jacob, S.: IMM. Informatics and Mathematical Modeling. Technical University of Denmark. DACE A Matlab Kriging Toolbox (2002)

    Google Scholar 

  18. Sacks, J., William, J.W., Mitchell, T.J., Henry, P.W.: Design and Analysis of Computer Experiments. H.P, Statistical Science 4(4), 409–423 (1989)

    Article  MATH  Google Scholar 

  19. Martin, J., Simpson, T.: Use of kriging models to approximate deterministic computer models. AIAA Journal 43(4), 853–863 (2005)

    Article  Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raghava, M., Agarwal, A., Rao, C.R. (2013). Spatial Anisotropic Interpolation Approach for Text Removal from an Image. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2013. Lecture Notes in Computer Science(), vol 8271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44949-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44949-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44948-2

  • Online ISBN: 978-3-642-44949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics