Skip to main content

AOF-Based Algorithm for Dynamic Multi-Objective Distributed Constraint Optimization

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8271))

  • 946 Accesses

Abstract

Many real world problems involve multiple criteria that should be considered separately and optimized simultaneously. A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP) is the extension of a mono-objective Distributed Constraint Optimization Problem (DCOP). A DCOP is a fundamental problem that can formalize various applications related to multi-agent cooperation. This problem consists of a set of agents, each of which needs to decide the value assignment of its variables so that the sum of the resulting rewards is maximized. An MO-DCOP is a DCOP which involves multiple criteria. Most researches have focused on developing algorithms for solving static problems. However, many real world problems are dynamic. In this paper, we focus on a change of criteria/objectives and model a Dynamic MO-DCOP (DMO-DCOP) which is defined by a sequence of static MO-DCOPs. Furthermore, we develop a novel algorithm for DMO-DCOPs. The characteristics of this algorithm are as follows: (i) it is a reused algorithm which finds Pareto optimal solutions for all MO-DCOPs in a sequence using the information of previous solutions, (ii) it utilizes the Aggregate Objective Function (AOF) technique which is the widely used classical method to find Pareto optimal solutions, and (iii) the complexity of this algorithm is determined by the induced width of problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billiau, G., Chang, C.F., Ghose, A.: Sbdo: A new robust approach to dynamic distributed constraint optimisation. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 11–26. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bringmann, K., Friedrich, T., Neumann, F., Wagner, M.: Approximation-guided evolutionary multi-objective optimization. In: IJCAI, pp. 1198–1203 (2011)

    Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  5. Ehrgott, M.: Multicriteria Optimization. Springer (2005)

    Google Scholar 

  6. Fave, F.M.D., Stranders, R., Rogers, A., Jennings, N.R.: Bounded decentralised coordination over multiple objectives. In: AAMAS, pp. 371–378 (2011)

    Google Scholar 

  7. Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: AAMAS, pp. 599–606 (2008)

    Google Scholar 

  8. Lesser, V., Ortiz, C., Tambe, M. (eds.): Distributed Sensor Networks: A Multiagent Perspective, vol. 9. Kluwer Academic Publishers (2003)

    Google Scholar 

  9. Lin, J.G.: On min-norm and min-max methods of multi-objective optimization. Mathematical Programming 103(1), 1–33 (2005)

    Article  MathSciNet  Google Scholar 

  10. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In: AAMAS, pp. 310–317 (2004)

    Google Scholar 

  11. Marinescu, R.: Best-first vs. depth-first and/or search for multi-objective constraint optimization. In: ICTAI, pp. 439–446 (2010)

    Google Scholar 

  12. Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Matsuo, H.: Distributed search method with bounded cost vectors on multiple objective dcops. In: Rahwan, I., Wobcke, W., Sen, S., Sugawara, T. (eds.) PRIMA 2012. LNCS, vol. 7455, pp. 137–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  14. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Okimoto, T., Ikegai, N., Ribeiro, T., Inoue, K., Okada, H., Maruyama, H.: Cyber security problem based on multi-objective distributed constraint optimization technique. In: DSN Workshop (to appear, 2013)

    Google Scholar 

  16. Perny, P., Spanjaard, O.: Near admissible algorithms for multiobjective search. In: ECAI, pp. 490–494 (2008)

    Google Scholar 

  17. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: IJCAI, pp. 266–271 (2005)

    Google Scholar 

  18. Rollon, E., Larrosa, J.: Bucket elimination for multiobjective optimization problems. Journal of Heuristics 12(4-5), 307–328 (2006)

    Article  MATH  Google Scholar 

  19. Yeoh, W., Varakantham, P., Sun, X., Koenig, S.: Incremental dcop search algorithms for solving dynamic dcops. In: AAMAS, pp. 1069–1070 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okimoto, T., Clement, M., Inoue, K. (2013). AOF-Based Algorithm for Dynamic Multi-Objective Distributed Constraint Optimization. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2013. Lecture Notes in Computer Science(), vol 8271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44949-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44949-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44948-2

  • Online ISBN: 978-3-642-44949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics