Skip to main content

Neurotrophic Factors in Spinal Cord Injury

  • Chapter
  • First Online:
Neurotrophic Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 220))

Abstract

A major challenge in repairing the injured spinal cord is to assure survival of damaged cells and to encourage regrowth of severed axons. Because neurotrophins are known to affect these processes during development, many experimental approaches to improving function of the injured spinal cord have made use of these agents, particularly Brain derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3). More recently, neurotrophins have also been shown to affect the physiology of cells and synapses in the spinal cord. The effect of neurotrophins on circuit performance adds an important dimension to their consideration as agents for repairing the injured spinal cord. In this chapter we discuss the role of neurotrophins in promoting recovery after spinal cord injury from both a structural and functional perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Althaus HH, Klöppner S, Klopfleisch S, Schmitz M (2008) Oligodendroglial cells and neurotrophins: a polyphonic cantata in major and minor. J Mol Neurosci 35:65–79

    CAS  PubMed  Google Scholar 

  • Alto LT, Havton LA, Conner JM, Hollis ER, Blesch A, Tuszynski MH (2009) Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12:1106–1113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arvanian VL, Mendell LM (2001a) Removal of NMDA receptor Mg2+ block extends the action of neurotrophin-3 on synaptic transmission in neonatal rat motoneurons. J Neurophysiol 86:123–129

    CAS  PubMed  Google Scholar 

  • Arvanian VL, Mendell LM (2001b) Acute modulation of synaptic transmission to motoneurons by BDNF in the neonatal rat spinal cord. Eur J Neurosci 14:1800–1808

    CAS  PubMed  Google Scholar 

  • Arvanian VL, Horner PJ, Gage FH, Mendell LM (2003) Chronic Neurotrophin-3 strengthens synaptic connections to motoneurons in the neonatal rat. J Neurosci 23:8706–8712

    CAS  PubMed  Google Scholar 

  • Arvanian VL, Bowers WJ, Petruska JC, Manuzon H, Narrow WC, Motin V, Federoff HJ, Mendell LM (2004) Viral delivery of NR2D subunits reduces Mg2+ block of NMDA receptor and restores NT-3-induced potentiation of AMPA/kainate responses in maturing rat motoneurons. J Neurophysiol 92:2394–2404

    CAS  PubMed  Google Scholar 

  • Arvanian VL, Bowers WJ, Anderson AJ, Horner PJ, Federoff HJ, Mendell LM (2006) Combined delivery of neurotrophin-3 and NMDA receptors 2D subunit strengthens synaptic transmission in contused and staggered double hemisected spinal cord of neonatal rat. Exp Neurol 197:347–352

    CAS  PubMed  Google Scholar 

  • Arvanov VL, Seebach BS, Mendell LM (2000) NT-3 evokes an LTP- like facilitation of AMPA/Kainate- mediated synaptic transmission in the neonatal rat spinal cord. J Neurophysiol 84:752–758

    CAS  PubMed  Google Scholar 

  • Bamber NI, Li H, Lu X, Oudega M, Aebischer P, Xu XM (2001) Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci 3:257–268

    Google Scholar 

  • Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84–95

    CAS  PubMed  Google Scholar 

  • Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277

    CAS  PubMed  Google Scholar 

  • Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10:580–583

    CAS  PubMed  Google Scholar 

  • Blits B, Oudega M, Boer GJ, Bartlett Bunge M, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118:271–281

    CAS  PubMed  Google Scholar 

  • Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyce VS, Lemay MA (2009) Modularity of endpoint force patterns evoked using intraspinal microstimulation in treadmill trained and/or neurotrophin-treated chronic spinal cats. J Neurophysiol 101:1309–1320

    PubMed Central  PubMed  Google Scholar 

  • Boyce VS, Tumolo M, Fischer I, Murray M, Lemay MA (2007) Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol 98:1988–1996

    PubMed  Google Scholar 

  • Boyce VS, Park J, Gage FH, Mendell LM (2012) Differential effects of BDNF and NT-3 on hindlimb function in paraplegic rats. Eur J Neurosci 53:221–232

    Google Scholar 

  • Boyd JG, Gordon T (2003) Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 2:277–324

    Google Scholar 

  • Bradbury EJ, Khemani S, King VR, Priestley JV, McMahon SB (1999) NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur J Neurosci 11:3873–3883

    CAS  PubMed  Google Scholar 

  • Bregman BS (1998) Regeneration in the spinal cord. Curr Opin Neurobiol 8:800–807

    CAS  PubMed  Google Scholar 

  • Bregman BS, McAtee M, Dai HN, Kuhn PL (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 148:475–494

    CAS  PubMed  Google Scholar 

  • Bretzner F, Liu J, Currie E, Roskams AJ, Tetzlaff W (2008) Undesired effects of a combinatorial treatment for spinal cord injury–transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci 28:1795–1807

    PubMed  Google Scholar 

  • Brock JH, Rosenzweig ES, Blesch A, Moseanko R, Havton LA, Edgerton VR, Tuszynski MH (2010) Local and remote growth factor effects after primate spinal cord injury. J Neurosci 30:9728–9737

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brown A, Ricci MJ, Weaver LC (2007) NGF mRNA is expressed in the dorsal root ganglia after spinal cord injury in the rat. Exp Neurol 205:283–286

    CAS  PubMed  Google Scholar 

  • Chen HH, Hippenmeyer S, Arber S, Frank E (2003) Development of the monosynaptic stretch reflex circuit. Curr Opin Neurobiol 13:96–102

    CAS  PubMed  Google Scholar 

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    CAS  PubMed  Google Scholar 

  • Côté MP, Azzam GA, Lemay MA, Zhukareva V, Houle JD (2011) Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury. J Neurotrauma 28:299–309

    PubMed Central  PubMed  Google Scholar 

  • Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340

    PubMed  Google Scholar 

  • DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM, Lindsay RM, Wiegand SJ (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8:983–993

    CAS  PubMed  Google Scholar 

  • Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960

    CAS  PubMed  Google Scholar 

  • Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fortun J, Puzis R, Pearse DD, Gage FH, Bunge MB (2009) Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI. J Neurotrauma 26:941–953

    PubMed  Google Scholar 

  • García-Alías G, Petrosyan H, Schnell H, Horner PJ, Bowers WJ, Mendell LM, Fawcett JW, Arvanian VL (2011) Chondroitinase ABC combined with NT3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord. J Neurosci 31:17788–17799

    PubMed Central  PubMed  Google Scholar 

  • Giehl KM, Tetzlaff W (1996) BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci 8:1167–1175

    CAS  PubMed  Google Scholar 

  • Gonzalez M, Collins WF III (1997) Modulation of motoneuron excitability by brain derived neurotrophic factor. J Neurophysiol 77:502–506

    CAS  PubMed  Google Scholar 

  • Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572

    CAS  PubMed  Google Scholar 

  • Hagg T, Baker KA, Emsley JG, Tetzlaff W (2005) Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Neuroscience 130:875–887

    CAS  PubMed  Google Scholar 

  • Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, Karihaloo M, Rullamas J, Evans T, McMahon SB, Armanini MP, Berkemeier L, Phillips HS, Rosenthal A (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363:266–270

    CAS  PubMed  Google Scholar 

  • Hendriks WTJ, Ruitenberg MJ, Blits B, Boer GJ, Verhaagen J (2004) Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. In: Aloe L, Calza L (eds) NGF and related molecules in health and disease, vol 146, Progress in brain research. Elsevier, Amsterdam, pp 451–476

    Google Scholar 

  • Hermens WT, Verhaagen J (1998) Viral vectors, tools for gene transfer in the nervous system. Prog Neurobiol 55:399–432

    CAS  PubMed  Google Scholar 

  • Jakeman LB, Wei P, Guan Z, Stokes BT (1998) Brain derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury. Exp Neurol 154:170–184

    CAS  PubMed  Google Scholar 

  • Jin Y, Tessler A, Fischer I, Houle JD (2002) Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 177:265–275

    CAS  PubMed  Google Scholar 

  • Kobayashi NR, Fan D, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and T_1- tubulin mRNA expression and promote axonal regeneration. J Neurosci 17:9583–9595

    CAS  PubMed  Google Scholar 

  • Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL (1993) Evidence that brain derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10:359–367

    CAS  PubMed  Google Scholar 

  • Krenz NR, Meakin SO, Krassioukov AV, Weaver LC (1999) Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. J Neurosci 19:7405–7414

    CAS  PubMed  Google Scholar 

  • Kwok JC, Afshari F, García-Alías G, Fawcett JW (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26:131–145

    PubMed  Google Scholar 

  • Leblond H, L’Esperance M, Orsal D, Rossignol S (2003) Treadmill locomotion in the intact and spinal mouse. J Neurosci 23:11411–11419

    CAS  PubMed  Google Scholar 

  • Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277:2000–2002

    CAS  PubMed  Google Scholar 

  • Liu Y, Himes BT, Moul J, Huang W, Chow SY, Tessler A, Fischer I (1997) Application of recombinant adenovirus for in vivo gene delivery to spinal cord. Brain Res 768:19–29

    CAS  PubMed  Google Scholar 

  • Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I (1999) Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci 19:4370–4387

    CAS  PubMed  Google Scholar 

  • Lovely RG, Gregor RJ, Roy RR, Edgerton VR (1986) Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92:421–435

    CAS  PubMed  Google Scholar 

  • Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360

    CAS  PubMed  Google Scholar 

  • Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150:1264–1273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lujan HL, Chen Y, Dicarlo SE (2009) Paraplegia increased cardiac NGF content, sympathetic tonus, and the susceptibility to ischemia-induced ventricular tachycardia in conscious rats. Am J Physiol Heart Circ Physiol 296:H1364–H1372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL (2011) Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 115:189–204

    PubMed Central  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC (1997) Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18:767–778

    CAS  PubMed  Google Scholar 

  • McDonald JW (1999) Repairing the damaged spinal cord. Sci Am 281:64–73

    CAS  PubMed  Google Scholar 

  • McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    CAS  PubMed  Google Scholar 

  • Mendell LM, Johnson RD, Munson JB (1999) Neurotrophin modulation of the monosynaptic reflex after peripheral nerve transection. J Neurosci 19:3162–3170

    CAS  PubMed  Google Scholar 

  • Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB (1998) Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 10:607–621

    CAS  PubMed  Google Scholar 

  • Mitsui T, Fischer I, Shumsky JS, Murray M (2005) Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats. Exp Neurol 194:410–431

    CAS  PubMed  Google Scholar 

  • Müller HW, Beckh S, Seifert W (1984) Neurotrophic factor for central neurons. Proc Natl Acad Sci USA 81:1248–1252

    PubMed Central  PubMed  Google Scholar 

  • Murray KC, Nakae A, Stephens MJ, Rank M, D’Amico J, Harvey PJ, Li X, Harris RLW, Ballou EW, Anelli R, Heckman CJ, Mashimo T, Vavrek R, Sanelli L, Gorassini MA, Bennett DJ, Fouad K (2010) Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med 16:694–700

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nieto-Sampedro M, Lewis ER, Cotman CW, Manthorpe M, Skaper SD, Barbin G, Longo FM, Varon S (1982) Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science 217:860–861

    CAS  PubMed  Google Scholar 

  • Novikova LN, Novikov LN, Kellerth JO (2002) Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 452:255–263

    CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesiumgates glutamate-activated channels in mouse central neurons. Nature 307:462–465

    CAS  PubMed  Google Scholar 

  • Pearson KG (2001) Could enhanced reflex function contribute to improving locomotion after spinal cord repair? J Physiol 533:75–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petruska JC, Mendell LM (2009) Nerve growth factor. In: Squire LR (ed) Encyclopedia of Neuroscience, vol 6. Elsevier, Oxford, pp 71–78

    Google Scholar 

  • Petruska JC, Ichiyama RM, Crown ED, Tansey KE, Roy RR, Edgerton VR, Mendell LM (2007) Changes in motoneuron properties and synaptic inputs related to step training following spinal cord transection in rats. J Neurosci 27:4460–4471

    CAS  PubMed  Google Scholar 

  • Petruska JC, Kitay B, Boyce VS, Kaspar BK, Pearse DD, Gage FH, Mendell LM (2010) Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats. Eur J Neurosci 32:997–1005

    PubMed Central  PubMed  Google Scholar 

  • Ramer MS, Priestley JV, McMahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403:312–316

    CAS  PubMed  Google Scholar 

  • Ramer MS, Bishop T, Dockery P, Mobarak MS, O’Leary D, Fraher JP, Priestley JV, McMahon SB (2002) Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy. Mol Cell Neurosci 19:239–249

    CAS  PubMed  Google Scholar 

  • Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29:14932–14941

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Barde Y-A, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    CAS  PubMed  Google Scholar 

  • Schnell L, Hunanyan A, Bowers W, Horner P, Federoff H, Gullo M, Schwab ME, Mendell LM, Arvanian VL (2011) Combined delivery of Nogo-A antibody, neurotrophin-3 and NMDA-2D subunits establishes a functional “detour” in a hemisected spinal cord. Eur J Neurosci 34:1256–1267

    PubMed Central  PubMed  Google Scholar 

  • Seebach BS, Arvanov V, Mendell LM (1999) Neurotrophin influence on the development of segmental reflexes in the rat. J Neurophysiol 81:2398–2405

    CAS  PubMed  Google Scholar 

  • Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde Y-A (1992) Brain derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–759

    CAS  PubMed  Google Scholar 

  • Senut MC, Tuszynski MH, Raymon HK, Suhr ST, Liou NH, Jones KR, Reichardt LF, Gage FH (1995) Regional differences in responsiveness of adult CNS axons to grafts of cells expressing human neurotrophin 3. Exp Neurol 135:36–55

    CAS  PubMed  Google Scholar 

  • Shanthanelson M, Mendell LM (2010) Differential NR2B- subunit expression at dorsal root and ventrolateral funiculus synapses on lumbar motoneurons of neonatal rat. Neuroscience 166:730–737

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shanthanelson M, Arvanian VL, Mendell LM (2009) Input- specific plasticity of NMDA- receptor mediated synaptic responses in neonatal rat motoneurons. Eur J Neurosci 29:2125–2136

    PubMed Central  PubMed  Google Scholar 

  • Shneider NA, Mentis GZ, Schustak J, O’Donovan MJ (2009) Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3. J Neurosci 29:4719–4735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Starkey ML, Schwab ME (2011) Anti-Nogo-A and training: can one plus one equal three? Exp Neurol 232:81–89

    PubMed  Google Scholar 

  • Strack S, Colbran RJ (1998) Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem 273:20689–20692

    CAS  PubMed  Google Scholar 

  • Tan AM, Petruska JC, Mendell LM, Levine JM (2007) Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state. Exp Neurol 206:257–268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson AK, Pomerantz FR, Wolpaw JR (2013) Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci 33:2365–2375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tobias CA, Dhoot NO, Wheatley MA, Tessler A, Murray M, Fischer I (2001) Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats. J Neurotrauma 18:287–301

    CAS  PubMed  Google Scholar 

  • Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, Murray M (2003) Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 184:97–113

    CAS  PubMed  Google Scholar 

  • Toledo-Aral JJ, Brehm P, Halegoua S, Mandel G (1995) A single pulse of nerve growth factor triggers long-term neuronal excitability through sodium channel gene induction. Neuron 14:607–611

    CAS  PubMed  Google Scholar 

  • Tuszynski MH, Peterson DA, Ray J, Baird A, Nakahara Y, Gage FH (1994) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol 126:1–14

    CAS  PubMed  Google Scholar 

  • Tuszynski MH, Mafong E, Meyer S (1996) Central infusions of brain derived neurotrophic factor and neurotrophin-4/5, but not nerve growth factor and neurotrophin-3, prevent loss of the cholinergic phenotype in injured adult motor neurons. Neuroscience 71:761–771

    CAS  PubMed  Google Scholar 

  • Tuszynski MH, Grill R, Jones LL, Brant A, Blesch A, Low K, Lacroix S, Lu P (2003) NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol 181:47–56

    CAS  PubMed  Google Scholar 

  • Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K (2006) BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129:1534–1545

    CAS  PubMed  Google Scholar 

  • von Meyenburg J, Brosamle C, Metz GAS, Schwab ME (1998) Regeneration and sprouting of chronically injured corticospinal tract fibers in adult rats promoted by NT-3 and the mAb IN-1, which neutralizes myelin-associated neurite growth inhibitors. Exp Neurol 154:583–594

    Google Scholar 

  • Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 134:261–272

    CAS  PubMed  Google Scholar 

  • Yan Q, Elliott JL, Matheson C, Sun J, Zhang L, Mu X, Rex KL, Snider WD (1993) Influences of neurotrophins on mammalian motoneurons in vivo. J Neurobiol 24:1555–1577

    CAS  PubMed  Google Scholar 

  • Ye JH, Houle JD (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 143:70–81

    CAS  PubMed  Google Scholar 

  • Ying Z, Roy RR, Edgerton VR, Gómez-Pinilla F (2005) Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 193:411–419

    CAS  PubMed  Google Scholar 

  • Ying Z, Roy RR, Zhong H, Zdunowski S, Edgerton VR, Gomez-Pinilla F (2008) BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience 155:1070–1078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD (2003) Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 23:1424–1431

    CAS  PubMed  Google Scholar 

  • Zhu W, Galoyan SM, Petruska JC, Oxford GS, Mendell LM (2004) A developmental switch in acute sensitization of small dorsal root ganglion (DRG) neurons to capsaicin or noxious heating by NGF. J Neurophysiol 92:3148–3152

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors’ research was supported by the Christopher and Dana Reeve Foundation and a grant from the National Institutes of Health (5 R01 NS 16996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorne M. Mendell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg 2014

About this chapter

Cite this chapter

Boyce, V.S., Mendell, L.M. (2014). Neurotrophic Factors in Spinal Cord Injury. In: Lewin, G., Carter, B. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45106-5_16

Download citation

Publish with us

Policies and ethics