Skip to main content

Adipogenesis Using Human Adipose Tissue-Derived Cells Impregnated with Basic Fibroblast Growth Factor

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures
  • 1697 Accesses

Abstract

Mastectomy results in the loss of one or both breasts and often causes low self-esteem, poor body image, and mental anguish for patients. Recently, tissue engineering has gained favor as an emerging biomedical technology to repair or regenerate lost breast tissues by combining cells with artificial material of cell scaffoldings and growth factor. This chapter focuses on adipogenesis using human adipose tissue-derived cells impregnated with basic fibroblast growth factor (bFGF). bFGF is a key factor present in native adipose tissue. It has been widely utilized in adipose tissue engineering strategies. The use of controlled release of bFGF from various materials has achieved accelerated neovascularization and adipose tissue formation. This strategy has tremendous potential in adipose tissue engineering. Future work is required to perfect this technology for reconstruction of volume contour deformities in adipose tissue due to trauma or surgical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billings Jr E, May Jr JW. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989;83(2):368–81.

    Article  PubMed  Google Scholar 

  2. Carlson GW. Breast reconstruction. Surgical options and patient selection. Cancer. 1994;74(1 Suppl):436–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ellenbogen R. Free autogenous pearl fat grafts in the face – a preliminary report of a rediscovered technique. Ann Plast Surg. 1986;16(3):179–94.

    Article  CAS  PubMed  Google Scholar 

  4. Peer LA. The neglected free fat graft, its behavior and clinical use. Am J Surg. 1956;92(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rossatti B. Revascularisation and phagocytosis in free fat autografts: an experimental study. Br J Plast Surg. 1960;13:35–41.

    Article  CAS  PubMed  Google Scholar 

  6. Smahel J. Experimental implantation of adipose tissue fragments. Br J Plast Surg. 1989;42(2):207–11.

    Article  CAS  PubMed  Google Scholar 

  7. Ersek RA. Transplantation of purified autologous fat: a 3-year follow-up is disappointing. Plast Reconstr Surg. 1991;87(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  8. Patrick Jr CW. Tissue engineering strategies for adipose tissue repair. Anat Rec. 2001;263(4):361–6.

    Article  CAS  PubMed  Google Scholar 

  9. Tabata Y. The importance of drug delivery systems in tissue engineering. Pharm Sci Technol Today. 2000;3(3):80–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tabata Y. Significance of release technology in tissue engineering. Drug Discov Today. 2005;10(23–24): 1639–46.

    Article  CAS  PubMed  Google Scholar 

  11. Langer R. Tissue engineering: perspectives, challenges, and future directions. Tissue Eng. 2007;13(1):1–2.

    Article  PubMed  Google Scholar 

  12. Brey EM, Patrick Jr CW. Tissue engineering applied to reconstructive surgery. IEEE Eng Med Biol Mag. 2000;19(5):122–5.

    Article  CAS  PubMed  Google Scholar 

  13. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  14. Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices. Organogenesis. 2008;4(4):228–35.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Patrick CW, Uthamanthil R, Beahm E, Frye C. Animal models for adipose tissue engineering. Tissue Eng Part B Rev. 2008;14(2):167–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A. 1986;83(19):7292–301.

    Article  Google Scholar 

  17. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–7.

    Article  CAS  PubMed  Google Scholar 

  18. Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997;18(18):1201–25.

    Article  CAS  PubMed  Google Scholar 

  19. Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature. 1974;249(453):123–7.

    Article  CAS  PubMed  Google Scholar 

  20. Servold SA. Growth factor impact on wound healing. Clin Podiatr Med Surg. 1991;8(4):937–53.

    CAS  PubMed  Google Scholar 

  21. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–65.

    Article  CAS  PubMed  Google Scholar 

  22. Bennett NT, Schultz GS. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg. 1993;165:728–37.

    Article  CAS  PubMed  Google Scholar 

  23. Bennett NT, Schultz GS. Growth factors and wound healing: part II. Role in normal and chronic wound healing. Am J Surg. 1993;166(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka E, Ase K, Okuda T, Okumura M, Nogimori K. Mechanism of acceleration of wound healing by basic fibroblast growth factor in genetically diabetic mice. Biol Pharm Bull. 1996;19(9):1141–8.

    Article  CAS  PubMed  Google Scholar 

  25. Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev. 2010;16(4):413–26.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Patrick Jr CW, Chauvin PB, Hobley J, Reece GP. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng. 1999;5(2):139–51.

    Article  CAS  PubMed  Google Scholar 

  27. Patrick Jr CW, Zheng B, Johnston C, Reece GP. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 2002;8(2):283–93.

    Article  CAS  PubMed  Google Scholar 

  28. Cronin KJ, Messina A, Knight KR, Cooper-White JJ, Stevens GW, Penington AJ, Morrison WA. New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast Reconstr Surg. 2004;113(1):260–9.

    Article  PubMed  Google Scholar 

  29. Neubauer M, Hacker M, Bauer-Kreiser P, Weiser B, Fischbach C, Schulz MB, Goepferich A, Blunk T. Adipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitro. Tissue Eng. 2005;11(11–12):1840–51.

    Article  CAS  PubMed  Google Scholar 

  30. Cho SW, Kim SS, Rhie JW, Cho HM, Choi CY, Kim BS. Engineering of volume-stable adipose tissues. Biomaterials. 2005;26(17):3577–85.

    Article  CAS  PubMed  Google Scholar 

  31. Cho SW, Song KW, Rhie JW, Park MH, Choi CY, Kim BS. Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant. 2007;16(4):421–34.

    PubMed  Google Scholar 

  32. Dolderer JH, Abberton KM, Thompson EW, Slavin JL, Stevens GW, Penington AJ, Morrison WA. Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng. 2007;13(4):673–81.

    Article  CAS  PubMed  Google Scholar 

  33. Kang SW, Seo SW, Choi CY, Kim BS. Porous poly(lactic-co-glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering. Tissue Eng Part C Methods. 2008;14(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  34. Marra KG, Defail AJ, Clavijo-Alvarez JA, Badylak SF, Taieb A, Schipper B, Bennett J, Rubin JP. FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg. 2008;121(4):1153–64.

    Article  CAS  PubMed  Google Scholar 

  35. Choi YS, Park SN, Suh H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials. 2005;26(29):5855–63.

    Article  CAS  PubMed  Google Scholar 

  36. Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M. Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun. 2006;345(2):631–7.

    Article  CAS  PubMed  Google Scholar 

  37. Borges J, Mueller MC, Padron NT, Tegtmeier F, Lang EM, Stark GB. Engineered adipose tissue supplied by functional microvessels. Tissue Eng. 2003;9(6):1263–70.

    Article  CAS  PubMed  Google Scholar 

  38. Borges J, Müller MC, Momeni A, Stark GB, Torio-Padron N. In vitro analysis of the interactions between preadipocytes and endothelial cells in a 3D fibrin matrix. Minim Invasive Ther Allied Technol. 2007;16(3):141–8.

    Article  PubMed  Google Scholar 

  39. Torio-Padron N, Baerlecken N, Momeni A, Stark GB, Borges J, et al. Engineering of adipose tissue by injection of human preadipocytes in fibrin. Aesthetic Plast Surg. 2007;31(3):285–93.

    Article  PubMed  Google Scholar 

  40. Hong L, Peptan I, Clark P, Mao JJ. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge. Ann Biomed Eng. 2005;33(4):511–7.

    Article  PubMed  Google Scholar 

  41. Hong L, Peptan IA, Colpan A, Daw JL. Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs. 2006;183(3):133–40.

    Article  CAS  PubMed  Google Scholar 

  42. Kimura Y, Ozeki M, Inamoto T, Tabata Y. Time course of de novo adipogenesis in matrigel by gelatin microspheres incorporating basic fibroblast growth factor. Tissue Eng. 2002;8(4):603–13.

    Article  CAS  PubMed  Google Scholar 

  43. Kimura Y, Ozeki M, Inamoto T, Tabata Y. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials. 2003;24(14):2513–21.

    Article  CAS  PubMed  Google Scholar 

  44. Hiraoka Y, Yamashiro H, Yasuda K, Kimura Y, Inamoto T, Tabata Y. In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng. 2006;12(6):1475–87.

    Article  CAS  PubMed  Google Scholar 

  45. Vashi AV, Abberton KM, Thomas GP, Morrison WA, O'Connor AJ, Cooper-White JJ, Thompson EW. Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. Tissue Eng. 2006;12(11):3035–43.

    Article  CAS  PubMed  Google Scholar 

  46. Tsuji W, Inamoto T, Yamashiro H, Ueno T, Kato H, Kimura Y, Tabata Y, Toi M. Adipogenesis induced by human adipose tissue-derived stem cells. Tissue Eng Part A. 2009;15(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  47. Ito R, Morimoto N, Liem PH, Nakamura Y, Kawai K, Taira T, Tsuji W, Toi M, Suzuki S. Adipogenesis using human adipose tissue-derived stromal cells combined with a collagen/gelatin sponge sustaining release of basic fibroblast growth factor. J Tissue Eng Regen Med. 2012 Sep 21.

    Google Scholar 

  48. Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1998;95(3):1062–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tabata Y, Hong L, Miyamoto S, Miyao M, Hashimoto N, Ikada Y. Bone formation at a rabbit skull defect by autologous bone marrow cells combined with gelatin microspheres containing TGF-beta1. J Biomater Sci Polym Ed. 2000;11(8):891–901.

    Article  CAS  PubMed  Google Scholar 

  50. Toriyama K, Kawaguchi N, Kitoh J, Tajima R, Inou K, Kitagawa Y, Torii S. Endogenous adipocyte precursor cells for regenerative soft-tissue engineering. Tissue Eng. 2002;8(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  51. O’Connor KC, Song H, Rosenzweig N, Jansen DA. Extracellular matrix substrata alter adipocyte yield and lipogenesis in primary cultures of stromal-vascular cells from human adipose. Biotechnol Lett. 2003;25(23):1967–72.

    Article  PubMed  Google Scholar 

  52. Walton RL, Beahm EK, Wu L. De novo adipose formation in a vascularized engineered construct. Microsurgery. 2004;24(5):378–84.

    Article  PubMed  Google Scholar 

  53. Hemmrich K, Thomas GP, Abberton KM, Thompson EW, Rophael JA, Penington AJ, Morrison WA. Monocyte chemoattractant protein-1 and nitric oxide promote adipogenesis in a model that mimics obesity. Obesity (Silver Spring). 2007;15(12):2951–7.

    Article  CAS  Google Scholar 

  54. Kimura Y, Tsuji W, Yamashiro H, Toi M, Inamoto T, Tabata Y. In situ adipogenesis in fat tissue augmented by collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. J Tissue Eng Regen Med. 2010;4(1):55–61.

    CAS  PubMed  Google Scholar 

  55. Rubin JP, Bennett JM, Doctor JS, Tebbets BM, Marra KG. Collagenous microbeads as a scaffold for tissue engineering with adipose-derived stem cells. Plast Reconstr Surg. 2007;120(2):414–24.

    Article  CAS  PubMed  Google Scholar 

  56. Zisch AH, Zeisberger SM, Ehrbar M, Djonov V, Weber CC, Ziemiecki A, Pasquale EB, Hubbell JA. Engineered fibrin matrices for functional display of cell membrane-bound growth factor-like activities: study of angiogenic signaling by ephrin-B2. Biomaterials. 2004;25(16):3245–57.

    Article  CAS  PubMed  Google Scholar 

  57. Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res. 2004;94(8): 1124–32.

    Article  CAS  PubMed  Google Scholar 

  58. Jeon O, Ryu SH, Chung JH, Kim BS. Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release. 2005;105(3):249–59.

    Article  CAS  PubMed  Google Scholar 

  59. Cho SW, Gwak SJ, Kang SW, Bhang SH, Won Song KW, Yang YS, Choi CY, Kim BS. Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng. 2006;12(6):1651–61.

    Article  CAS  PubMed  Google Scholar 

  60. Christman KL, Fang Q, Yee MS, Johnson KR, Sievers RE, Lee RJ. Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials. 2005;26(10):1139–44.

    Article  CAS  PubMed  Google Scholar 

  61. Ryu JH, Kim IK, Cho SW, Cho MC, Hwang KK, Piao H, Piao S, Lim SH, Hong YS, Choi CY, Yoo KJ, Kim BS. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005;26(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  62. Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release. 2000;65(3):389–402.

    Article  CAS  PubMed  Google Scholar 

  63. Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994;79(6):1015–24.

    Article  CAS  PubMed  Google Scholar 

  64. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992;67(4):519–28.

    CAS  PubMed  Google Scholar 

  65. Tabata Y, Hijikata S, Ikada Y. Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release. 1994;31(2):189–99.

    Article  CAS  Google Scholar 

  66. Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev. 1998;31(3):287–301.

    Article  CAS  PubMed  Google Scholar 

  67. Tabata Y, Nagano A, Muniruzzaman M, Ikada Y. In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials. 1998;19(19):1781–9.

    Article  CAS  PubMed  Google Scholar 

  68. Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y. Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed. 1999;10(1):79–94.

    Article  CAS  PubMed  Google Scholar 

  69. Tabata Y, Nagano A, Ikada Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng. 1999;5(2):127–38.

    Article  CAS  PubMed  Google Scholar 

  70. von Heimburg D, Zachariah S, Heschel I, Kühling H, Schoof H, Hafemann B, Pallua N. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials. 2001;22(5):429–38.

    Article  Google Scholar 

  71. von Heimburg D, Kuberka M, Rendchen R, Rau G, Pallua N. Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int J Artif Organs. 2003;26(12):1064–76.

    Google Scholar 

  72. Patrick Jr CW, Wu X. Integrin-mediated preadipocyte adhesion and migration on laminin-1. Ann Biomed Eng. 2003;31(5):505–14.

    Article  PubMed  Google Scholar 

  73. Takemoto S, Morimoto N, Kimura Y, Taira T, Kitagawa T, Tomihata K, Tabata Y, Suzuki S. Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng Part A. 2008;14(10):1629–38.

    Article  CAS  PubMed  Google Scholar 

  74. Kanda N, Morimoto N, Takemoto S, Ayvazyan AA, Kawai K, Sakamoto Y, Taira T, Suzuki S. Efficacy of novel collagen/gelatin scaffold with sustained release of basic fibroblast growth factor for dermis-like tissue regeneration. Ann Plast Surg. 2011;69(5):569–74.

    Article  Google Scholar 

  75. Kloppenberg FW, Beerthuizen GI, ten Duis HJ. Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time. Burns. 2001;27(4):359–63.

    Article  CAS  PubMed  Google Scholar 

  76. Iabichella ML, Melillo E, Mosti G. A review of microvascular measurements in wound healing. Int J Low Extrem Wounds. 2006;5(3):181–99.

    Article  CAS  PubMed  Google Scholar 

  77. Monstrey SM, Hoeksema H, Baker RD, Jeng J, Spence RS, Wilson D, Pape SA. Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns. 2011;37(2):249–56.

    Article  CAS  PubMed  Google Scholar 

  78. Ayvazyan A, Morimoto N, Kanda N, Takemoto S, Kawai K, Sakamoto Y, Taira T, Suzuki S. Collagen-gelatin scaffold impregnated with bFGF accelerates palatal wound healing of palatal mucosa in dogs. J Surg Res. 2011;17(2):e247–57.

    Article  Google Scholar 

  79. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008;32(1):48–55.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, Eto H, Kato H, Hirohi T, Harii K. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatol Surg. 2008;34(9):1178–85.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Ito M.D, PhD. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ito, R. (2014). Adipogenesis Using Human Adipose Tissue-Derived Cells Impregnated with Basic Fibroblast Growth Factor. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics