Skip to main content

Mechanical and Morphology Properties of Cellulose Nanocomposites

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Cellulose nanofibers and their composites have a great deal of attention because of their abundance, biodegradability, high strength and stiffness, low weight, relatively low price, and the related characteristics such as a very large surface-to-volume ratio and outstanding mechanical, electrical, and thermal properties. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper industry and the agricultural sector. This chapter summarizes (i) the progress in nanocellulose preparation into polymer matrix with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose, (ii) the progress in the reinforcement of the carbon fiber/epoxy composites using nanocellulose as a hybrid reinforcement, (iii) the improvement in the mechanical properties of carbon fiber/epoxy composites using nanocellulose as hybrid reinforcement, and (iv) the morphology of CF/epoxy composite reinforced with nanocellulose showing the effect of nanocellulose on the fiber/matrix adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221

    Article  Google Scholar 

  2. Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921

    Article  ADS  Google Scholar 

  3. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309

    Article  Google Scholar 

  4. Mottershead B, Eichhorn SJ (2007) Deformation micromechanics of model regenerated cellulose fiber–epoxy/polyester composites. Compos Sci Technol 67:2150

    Article  Google Scholar 

  5. Takagaki N, Okubo K, Fujii T (2008) Improvement of fatigue strength and impact properties of plain-woven CFRP modified with micro fibrillated cellulose. Adv Mater Res 47:133

    Article  Google Scholar 

  6. Takagaki N, Okubo K, Fujii T (2008) Improvement of fatigue strength and impact properties of plain-woven CFRP modified with micro fibrillated cellulose. In: Proceedings of the 6th Asia-Australasian conference on composite materials (ACCM/6). Kumamouto, p 499

    Google Scholar 

  7. Gabr MH, Okubo K, Elrahman MA, Fujii T (2010) Effect of microfibrillated cellulose on mechanical properties of plain woven CFRP reinforced epoxy. Compos Struct 92:1999

    Article  Google Scholar 

  8. Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) Interfacial adhesion improvement of plain woven carbon fibre reinforced epoxy filled with micro-fibrillated cellulose by addition liquid rubber. J Mater Sci 45:3841

    Article  ADS  Google Scholar 

  9. Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) A study on mechanical properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with liquid rubber. J Compos A 1263

    Google Scholar 

  10. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibers. Compos Sci Technol 68:2201

    Article  Google Scholar 

  11. Gabr MH, Matsouka K, Okubo K, Fujii T (2010) Effect of different types of aramid fibres on mechanical and thermal properties of nano-cellulose composites for vehicle applications. Int J Vehicle Noise Vibration 6:118

    Article  Google Scholar 

  12. Turbak A, Snyder F, Sandberg K (1983) Suspensions containing microfibrillated cellulose. US Patent 4,378,381

    Google Scholar 

  13. Fontana JD, Joerke CG, Baron M, Maraschin M, Ferreira AG, Torriani I, Souza AM, Scares MB, Fontana MA, Guimaraes MF (1997) Acetobacter cellulosic biofilms search for new modulators of cellulogenesis and native membrane treatments. Appl Biochem Biotechnol 63:327

    Article  Google Scholar 

  14. Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:182

    Google Scholar 

  15. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  Google Scholar 

  16. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng 27:855

    Article  Google Scholar 

  17. Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64:2407

    Article  Google Scholar 

  18. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater 80:93

    Article  ADS  Google Scholar 

  19. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153

    Article  Google Scholar 

  20. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973

    Article  Google Scholar 

  21. Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163

    Article  Google Scholar 

  22. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fiber-reinforced starch biocomposites. Compos Sci Technol 69:1212

    Article  Google Scholar 

  23. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98:974

    Article  Google Scholar 

  24. Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103

    Article  Google Scholar 

  25. Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos Part A 39:738

    Article  Google Scholar 

  26. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285

    Article  Google Scholar 

  27. Nakagaito AN, Yano H (2005) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555

    Article  Google Scholar 

  28. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754

    Article  Google Scholar 

  29. Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. J Polym Environ 8:2556

    Google Scholar 

  30. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187

    Article  Google Scholar 

  31. Todo M, Jar P-YB, Takahashi K (2000) Initiation of a mode-II interlaminar crack from an insert film in the end-notched flexure composite specimen. Compos Sci Technol 60:263

    Article  Google Scholar 

  32. Okubo K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Series A 48:199

    Article  ADS  Google Scholar 

  33. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A 40:469

    Article  Google Scholar 

  34. Naoya Y, Kazuya O, Fujii T (2004) Improvement of bending strength, fracture toughness and impact strength of bamboo fiber composites by adding micro-fibrillated cellulose as an enhancer. Bamboo J 21:35

    Google Scholar 

  35. Mazumdar SK (2002) Composites manufacturing: materials, product, and process engineering. CRC Press LLC, Boca Raton

    Google Scholar 

  36. Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomas S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278

    Article  Google Scholar 

  37. Verchere D, Sautereau H, Pascault JP, Moschiar SM, Riccardi CC, Williams RJJ (1990) J Appl Polym Sci 41:467

    Article  Google Scholar 

  38. Chen TK, Jan YH (1991) Effect of rubber/matrix interfacial modifications on the properties of a rubber-toughened epoxy resin. Polym Eng Sci 31:577

    Article  Google Scholar 

  39. Bussi P, Ishida H (1994) Partially miscible blends of epoxy resin and epoxidized rubber: structural characterization of the epoxidized rubber and mechanical properties of the blends. J Appl Polym Sci 53:441

    Article  Google Scholar 

  40. Nigam V, Setua DK, Mathur GN (1999) Characterization of liquid carboxy terminated copolymer of butadiene acrylonitrile modified epoxy resin. Polym Eng Sci 39:1424

    Article  Google Scholar 

  41. Pearson AF, Yee AF (1989) Toughening mechanisms in elastomer-modified epoxies. Part 3: The effect of cross-link density. J Mater Sci 24:2571

    Article  ADS  Google Scholar 

  42. Thomas R, Abraham J, Thomas S (2004) Influence of carboxyl-terminated (butadiene-co-acrylonitrile) loading on the mechanical and thermal properties of cured epoxy blends. J Polym Sci B 42:2531

    Article  Google Scholar 

  43. Shukla D, Srivastava S (2006) Blends of modified epoxy resin and carboxyl-terminated polybutadiene. I. J Appl Polym Sci 100:1802

    Article  Google Scholar 

  44. Cheng S, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A 40:218

    Article  Google Scholar 

  45. Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulpderived microfibres in a PVA matrix. Holzforschung 60(1):53–58

    Article  Google Scholar 

  46. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521

    Article  Google Scholar 

  47. Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765

    Article  ADS  Google Scholar 

  48. Azizi Samir AS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612

    Article  Google Scholar 

  49. Tripathi G, Srivastava D (2007) Effect of carboxyl-terminated poly(butadiene co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-a (DGEBA) epoxy resin. Mater Sci Eng A443:262

    Article  Google Scholar 

  50. Shah Khan MZ, Mouritz AP (1996) Fatigue behaviour of stitched GRP laminates. Compos Sci Technol 56(6):695–701

    Article  Google Scholar 

  51. Velmurugan R, Solaimurugan S (2007) Improvements in mode I interlaminar fracture toughness and in-plane mechanical properties of stitched glass/polyester composites. Compos Sci Technol 67:61

    Article  Google Scholar 

  52. Ray D, Sarkar BK, Bose NR (2002) Impact fatigue behaviour of vinylester resin matrix composites reinforced with alkali treated jute fibers. Compos Part A Appl Sci Manuf 33:233

    Article  Google Scholar 

  53. Silva RV, Spinelli D, Bose Filho WW, Claro Neto S, Chierice GO, Tarpan JR (2006) Fracture toughness of natural fibers/castor oil polyurethane composites. Compos Sci Technol 66:1328

    Article  Google Scholar 

  54. Gao B, Kim J-K, Leung CKY (2003) Effect of rubber modifier on interlaminar fracture toughness of CFRP-concrete interface. Compos Sci Technol 63:883

    Article  Google Scholar 

  55. Jordan WM, Bradley WL (1987) Micromechanisms of fracture in toughened graphite-epoxy laminates. In: Johnston NJ (ed) Toughened composites, ASTM special technical publication 937. ASTM, Philadelphia, p 95

    Chapter  Google Scholar 

  56. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Epoxy nanocomposites – fracture and toughening mechanisms. Eng Fracture Mech 73:2375

    Article  Google Scholar 

  57. Faber KT, Evans AG (1983) Crack deflection processes – I. Theory. Acta Metall 31:565

    Article  Google Scholar 

  58. Faber KT, Evans AG (1983) Crack deflection processes – II. Experiment. Acta Metall 31:577

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Gabr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabr, M.H., Okubo, K., Fujii, T. (2015). Mechanical and Morphology Properties of Cellulose Nanocomposites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_65

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics