Skip to main content

The Renal and Epithelial Actions of Adenosine

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Adenosine acts to modulate a complex array of physiologic processes in a wide variety of cell types. Perhaps no other organ demonstrates the diverse cellular action of adenosine better than the kidney. With its numerous types of tubular epithelia, endothelium, vascular smooth muscle, nerves, and hormonal secretory cells, the kidney has become an interesting model in which to develop a unified hypothesis to explain the diverse actions of adenosine as a cellular regulator. Recent technical advances allowing the isolation of large numbers of specific renal cell types have provided a means of identifying which renal cell types have adenosine receptors and what postreceptor mechanisms are involved in mediating the actions of adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud HE, Dousa TP (1983) Action of adenosine on cyclic 3’5’-nucleotides in glomeruli. Am J Physiol 244:F633–F638

    PubMed  CAS  Google Scholar 

  2. Arend LJ, Haramati A, Thompson CI, Spielman WS (1984) Adenosine-induced decrease in renin release: dissociation from hemodynamic effects. Am J Physiol 247:F447–F452

    PubMed  CAS  Google Scholar 

  3. Arend LJ, Sonnenburg WK, Smith WL, Spielman WS (1986) Evidence for A1 and A2 adeno-sine receptors in rabbit cortical collecting tubule cells: modulation of hormone-stimulated cAMP (to be published)

    Google Scholar 

  4. Arend LJ, Thompson CI, Spielman WS (1985) Dipyridamole decreases glomerular filtration in the sodium-depleted dog. Evidence for mediation by intrarenal adenosine. Circ Res 56:242–251

    PubMed  CAS  Google Scholar 

  5. Arend LJ, Thompson CI, Brandt MA, Spielman WS (1986) Elevation of intrarenal adenosine by maleic acid decreases GFR and renin release. Kidney Int

    Google Scholar 

  6. Brezis M, Rosen S, Silva P, Epstein FH (1984) Renal ischemia: a new perspective. Kidney Int 26:375–383

    Article  PubMed  CAS  Google Scholar 

  7. Churchill PC, Bidani AK (1982) Hypothesis: adenosine mediates hemodynamic changes in renal failure. Med Hypotheses 8:275–285

    Article  PubMed  CAS  Google Scholar 

  8. Dillingham MA, Anderson RJ (1985) Purinergic regulation of basal and arginine vasopres-sin-stimulated hydraulic conductivity in rabbit cortical collecting tubule. J Membr Biol 88:277–281

    Article  PubMed  CAS  Google Scholar 

  9. Dobbins JW, Laurenson JP, Forrest JN Jr (1984) Adenosine and adenosine analogs stimulate adenosine cyclic 3′,5′-monophosphate-dependent chloride secretion in the mammalian ileum. J Clin Invest 74:929–935

    Article  PubMed  CAS  Google Scholar 

  10. Eveloff J, Kinne R, Kinne-Saffran E, Murer H, Silva P, Epstein FH, Stoff J, Kinter WB (1978) Coupled sodium and chloride transport into plasma membrane vesicles. Pflügers Arch 378:87–92

    Article  PubMed  CAS  Google Scholar 

  11. Forrest JN Jr, Rieck D, Murdaugh A (1980) Evidence for a ribose-specific adenosine receptor (Ra) mediating stimulation of chloride secretion in the rectal gland of Squalus acanthias. Bull Mt Desert Isl Biol Lab 20:152–155

    Google Scholar 

  12. Forrest JN Jr, Poeschla E, Rieck D (1982) Ribose-specific adenosine receptors mediate cyclic AMP accumulation and chloride transport in the shark rectal gland. Kidney Int 21:253 (Abstract)

    Google Scholar 

  13. Forrest JN Jr, Wang F, Beyenbach KW (1983) Perfusion of isolated tubules of the shark rectal gland: electrical characteristics and responses to hormones. J Clin Invest 72:1163–1167

    Article  PubMed  CAS  Google Scholar 

  14. Forrest JN Jr, Kelly G, Gifford D, Poeschla E, Sander S, Osswald H (1984) Characteristics of adenosine receptors mediating chloride transport. Clin Res 32:532A (Abstract)

    Google Scholar 

  15. Fredholm BB, Hedqvist P (1978) Release of [3H]purines from [3H]adenine-labelled rabbit kidney following sympathetic nerve stimulation, and its inhibition by alpha-adrenoreceptor blockade. Br J Pharmacol 64:239–245

    PubMed  CAS  Google Scholar 

  16. Garcia-Perez A, Smith WL (1983) Use of monoclonal antibodies to isolate cortical collecting tubule cells: AVP induces PGE release. Am J Physiol 244:C211–C220

    PubMed  CAS  Google Scholar 

  17. Grasl M, Turnheim K (1984) Stimulation of electrolyte secretion in rabbit colon by adenosine. J Physiol 346:93–110

    PubMed  CAS  Google Scholar 

  18. Hall JE, Granger JP (1986) Adenosine alters glomerular filtration control by angiotensin II. Am J Physiol 250:F917–F923

    PubMed  CAS  Google Scholar 

  19. Hall JE, Granger JP, Hester RL (1985) Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am J Physiol 248:F340–F346

    PubMed  CAS  Google Scholar 

  20. Hedqvist P, Fredholm BB, Olundh S (1978) Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res 43:592–598

    PubMed  CAS  Google Scholar 

  21. Kelley GG, Gifford DR, Wang F, Forrest JN Jr (1984) Stimulation and inhibition of adeny-late cyclase in the rectal gland. Bull Mt Desert Isl Biol Lab 24:102–104

    Google Scholar 

  22. Kelley GG, Curtis WS, Nuland AM, Forrest JN Jr (1985) Endogenous adenosine inhibits chloride secretion in the shark rectal gland via an A1 adenosine receptor coupled to the inhibitory nucleotide regulatory protein. Bull Mt Desert Isl Biol Lab 25:108–110

    Google Scholar 

  23. Lang MA, Preston AS, Handler JS, Forrest JN Jr (1985) Adenosine stimulated sodium transport in kidney A6 epithelia in culture. Am J Physiol 249:C330–C336

    PubMed  CAS  Google Scholar 

  24. Murray RD, Churchill PC (1984) The effects of adenosine receptor agonists in the isolated perfused rat kidney. Am J Physiol 247:H343–H348

    PubMed  CAS  Google Scholar 

  25. Osswald H (1975) Renal effects of adenosine and their inhibition by theophylline. Naunyn Schmeidebergs Arch Pharmacol 288:79–86

    Article  CAS  Google Scholar 

  26. Osswald H, Hermes HH, Nabakowski G (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int 22:S136–S142

    Article  Google Scholar 

  27. Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263–267

    Article  PubMed  CAS  Google Scholar 

  28. Osswald H, Spielman WS, Knox FG (1978) Mechanisms of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43:465–469

    PubMed  CAS  Google Scholar 

  29. Osswald H, Sander S, Forrest JN (1983) Binding of ligands to adenosine receptors in the rectal gland of Squalus acanthias. Bull. Mt. Desert Isl. Biol Lab 23:90–96

    Google Scholar 

  30. Poeschla E, Kelly G, Forrest JN Jr (1982) Evidence for an inhibitory adenosine receptor in the rectal gland of Squalus acanthias. Bull Mt Desert Isl Biol Lab 22:S19–S23

    Google Scholar 

  31. Poeschla E, Kelly GG, Gifford D, Forrest JN Jr (1985) Identification of adenosine receptor subtypes in the shark rectal gland. Clin Res 33:587A (Abstract)

    Google Scholar 

  32. Rossi N, Churchill P, Churchill M (1986) N6-Cyclohexyladenosine inhibits in vitro renin secretion by a cyclic AMP dependent process. Fed Proc 45:868 (Abstract)

    Google Scholar 

  33. Silva PJ, Stoff J, Field M, Fine L, Forrest JN, Epstein FH (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am J Physiol 233:F298–F306

    PubMed  CAS  Google Scholar 

  34. Smith WL, Garcia-Perez A (1985) Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am J Physiol 248:F1–F7

    PubMed  CAS  Google Scholar 

  35. Spielman WS (1984) Antagonistic effect of theophylline on the adenosine-induced decrease in renin release. Am J Physiol 247:F246–F251

    PubMed  CAS  Google Scholar 

  36. Spielman WS, Osswald H (1978) Characterization of the postocclusive response of renal blood flow in the cat. Am J Physiol 235:F286–F290

    PubMed  CAS  Google Scholar 

  37. Spielman WS, Osswald H (1979) Blockade of postocclusive renal vasoconstriction by an angiotensin II antagonist: evidence for an angiotensin-adenosine interaction. Am J Physiol 237:F463–F467

    PubMed  CAS  Google Scholar 

  38. Spielman WS, Thompson CI (1982) A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol 242:F423–F435

    PubMed  CAS  Google Scholar 

  39. Spielman WS, Britton SL, Fiksen-Olsen MJ (1980) Effect of adenosine on the distribution of renal blood flow in dogs. Circ Res 46:449–456

    PubMed  CAS  Google Scholar 

  40. Spielman WS, Sonnenberg WK, Allen ML, Arend LJ, Gerozissis K, Smith WL (1986) Immunodissection and culture of rabbit cortical collecting tubule cells. Am J Physiol 251:F348–F357

    PubMed  CAS  Google Scholar 

  41. Spinowitz BS, Zadunaisky JA (1979) Action of adenosine on chloride active transport of isolated frog cornea. Am J Physiol 237:F121–F127

    PubMed  CAS  Google Scholar 

  42. Stoff JS, Rosa R, Hallac R, Silva P, Epstein FH (1979) Hormonal regulation of active chloride transport in the dogfish rectal gland. Am J Physiol 237:F138–F144

    PubMed  CAS  Google Scholar 

  43. Tagawa H, Vander AJ (1970) Effects of adenosine compounds on renal function and renin secretion in dogs. Circ Res 26:327–338

    PubMed  CAS  Google Scholar 

  44. Thurau L (1964) Renal hemodynamics. Am J Med 36:698–719

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spielman, W.S., Arend, L.J., Forrest, J.N. (1987). The Renal and Epithelial Actions of Adenosine. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics