Skip to main content

Self-Organization, Catastrophe Theory and the Problem of Segmentation

  • Chapter
On Self-Organization

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 61))

  • 227 Accesses

Abstract

While self-organization has been studied for some time and is now a familiar concept in science, there is as yet no general theory nor even a generally accepted definition. Much of what has been done has been within the context of dissipative structures, so much so that for many people the two ideas have become totally conflated. But the concept of self-organization is much broader; it encompasses systems described by catastrophe theory, for example. Here we draw on the experience of catastrophe theory to suggest features that a theory of self-organization should have, and we illustrate this by the problem of segmentation. We point out that self-organization provides an alternative to natural selection as an explanation of order and organization in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arcuri, P. & Murray, J.D. (1986). Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. math. Biol. 24, 141–165.

    MATH  MathSciNet  Google Scholar 

  2. Bazin, M.J. & Saunders, P.T. (1979). Determination of critical variables in a microbial predator prey system by catastrophe theory. Nature 275 (1978) 52–54.

    Article  ADS  Google Scholar 

  3. Berry, M.V. & Upstill, C. (1980). Catastrophe optics: morphologies of caustics and their diffraction patterns. In Progress in Optics 18 (E. Wolfe, ed.). North Holland, Amsterdam, pp. 256–346.

    Google Scholar 

  4. Gierer, A. & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  5. Ho, M.W. (1984). Heredity and environment in development and evolution. In Beyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm (M.W. Ho & P.T. Saunders, eds). Academic Press, London, pp. 267–288.

    Google Scholar 

  6. Ho, M.W. (1990). An exercise in rational taxonomy. J. theor. Biol. 141, 43–57.

    Article  Google Scholar 

  7. Hunding, A., Kauffman, S.A. and Goodwin, B.C. (1990). Drosophila segmentation: Supercomputer simulation of prepattern hierarchy. J. theor. Biol. 145, 369–384.

    Article  Google Scholar 

  8. Lacalli, T.C. (1981). Dissipative structures and morphogenetic pattern in unicelluar algae. Phil. Trans. R. Soc. Lond. B294, 547–588.

    Article  ADS  Google Scholar 

  9. Lacalli, T.C., Wilkinson, D.A. and Harrison, L.G. (1988). Development 104, 105–113.

    Google Scholar 

  10. Le Guyader, H. & Hyver, C. (1990). Modelling of the duplication of cortical units along a kinety of Paramecium using reaction-diffusion equations. J. theor. Biol. 143, 233–250.

    Article  Google Scholar 

  11. Lovelock, J.E. (1979). Gaia: A New Look at Life on Earth. Oxford, Oxford University Press.

    Google Scholar 

  12. Lovelock, J.E. (1988). The Ages of Gaia. Oxford, Oxford University Press.

    Google Scholar 

  13. Maynard Smith, J. (1988). Evolutionary progress and levels of selection. In Evolutionary Progress (M.H. Nitecki, ed.) Chicago, University of Chicago Press, pp. 219–230

    Google Scholar 

  14. Meinhardt, H. (1982). Models of Biological Pattern Formation. London, Academic Press.

    Google Scholar 

  15. Meinhardt, H. (1988). Models for maternally supplied positional information and the activation of segmentation genes in Drosophila embryogenesis. Development 104 (Suppl) 95-110.

    Google Scholar 

  16. Murray, J.D. (1981). A pre-pattern mechanism for animal coat markings. J. theor. Biol. 88, 161–199.

    Article  Google Scholar 

  17. Murray, J.D. (1989). Mathematical Biology, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  18. Oster, G.F., Murray, J.D. and Harris, A.K. (1983). J. Embryol. exp. Morph. 18, 83.

    Google Scholar 

  19. Pan, P. and Wurster, B. (1979). Inactivation of the chemoattractant folic acid by cellular slime molds and identification of the reaction product. J. Bacteriol. 136, 955–959.

    Google Scholar 

  20. Sander, K. (1984). Embryonic pattern formation in insects: basic concepts and their experimental foundations. In Pattern Formation (G. Malacinski and S. Bryant, eds.), Macmillan, New York.

    Google Scholar 

  21. Saunders, P.T. (1980). An Introduction to Catastrophe Theory. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  22. Saunders, P.T. (1989). Mathematics, Structuralism and the Formal Cause in Biology. In Dynamic Structures in Biology (B.C. Goodwin, G.C. Webster & A. Sibatani, eds). Edinburgh University Press, Edinburgh, pp 107–120.

    Google Scholar 

  23. Saunders, P.T. (1993a). The Organism as a Dynamical System. In Thinking about Biology SFI Studies in the Sciences of Complexity, Lecture Notes Vol. III (F. Varela & W. Stein, eds). Addison Wesley, New York.

    Google Scholar 

  24. Saunders, P.T. (1993b). Evolution without natural selection: Further implications of the Daisy world parable. J. theor. Biol. (in press).

    Google Scholar 

  25. Saunders, P.T. and Ho, M.W. (1985). Primary and Secondary Waves in Prepattern Formation. J. Theor. Biol., 114 (1985) 491–504.

    Article  MathSciNet  Google Scholar 

  26. Saunders, P.T. and Ho, M.W. (1992). Successive bifurcations and the stability of segmentation. (to be submitted)

    Google Scholar 

  27. Smale, S. (1966). Structurally stable systems are not dense. Amer. J. Math. 88, 491–496.

    Article  MATH  MathSciNet  Google Scholar 

  28. Thorn, R. (1972). Stabilité Structurelle et Morphogénèse. Benjamin, Reading.

    Google Scholar 

  29. Thompson, D’A.W. (1917). On Growth and Form. Cambridge University Press, Cambridge.

    Google Scholar 

  30. Turing, A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B237, 37–72.

    Article  ADS  Google Scholar 

  31. Watson, A.J. & Lovelock, J.E. (1983). Biological homeostasis of the global environment: the parable of Daisy world. Tellus (1983), 35B, 284–289.

    Article  ADS  Google Scholar 

  32. Xu, Y., Vest, C. & Murray, J.D. (1983). Holographic interferometry used to demonstrate a theory of pattern formation in animal coats. Appl. Optics 22, 3479–3483.

    Article  ADS  Google Scholar 

  33. Zeeman, E.C. (1974). Primary and secondary waves in developmental biology. In Some Mathematical Questions in Biology VIII: Lectures in Mathematics in the Life Sciences, Vol. 7, (S.A. Levin, ed.). Providence, American Mathematical Society, pp. 69–161.

    Google Scholar 

  34. Zeeman, E.C. (1978). A dialogue between a mathematician and a biologist. Biosci. Commun. 4, 225–240.

    MathSciNet  Google Scholar 

  35. Zeeman, E.C. (1989). A new concept of stability. In Theoretical Biology: Epigenetic and Evolutionary Order from Complex Systems (B.C. Goodwin & P.T. Saunders, eds) Edinburgh, Edinburgh University Press, pp. 8–15.

    Google Scholar 

  36. Zuckerkandl, E. & Villet, R. (1988). Concentration affinity equivalence in gene regulation: Convergence of genetic and environmental effects. Proc. Natl. Acad. Sci. USA 85, 4784–4788.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saunders, P.T., Ho, M.W. (1994). Self-Organization, Catastrophe Theory and the Problem of Segmentation. In: Mishra, R.K., Maaß, D., Zwierlein, E. (eds) On Self-Organization. Springer Series in Synergetics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45726-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45726-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45728-9

  • Online ISBN: 978-3-642-45726-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics